{"title":"高铁近共晶Al-Si快速凝固合金组织与显微硬度演变","authors":"E. M. Ahmed, M. Ebrahim","doi":"10.1155/2014/587265","DOIUrl":null,"url":null,"abstract":"Al-11 wt.% Si-11 wt.% Fe (11.29 at.% Si-5.6 at.% Fe) melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze microstructure and phase precipitations. On the basis of the aluminum peak shifts measured in the XRD scans, a solid solubility extension value of 1 at.% Si in <path id=\"x1D6FC\" d=\"M545 106q-67 -118 -134 -118q-24 0 -40 37.5t-30 129.5h-2q-47 -72 -103 -119.5t-108 -47.5q-47 0 -76 45.5t-29 119.5q0 113 85 204t174 91q47 0 70 -33.5t43 -119.5h3q32 47 80 140l55 13l10 -9q-47 -80 -138 -201q17 -99 27.5 -136t22.5 -37q23 0 69 61zM333 204\nq-14 98 -31 149.5t-50 51.5q-49 0 -94 -70t-45 -164q0 -55 15.5 -86t40.5 -31q70 0 164 150z\"> -Al was determined. SEM investigations confirmed presence of a spherical shape -phase particles in addition to needle and spherical shape <path id=\"x1D6FD\" d=\"M558 587q0 -32 -14 -61t-40 -53.5t-48.5 -41t-54.5 -36.5q144 -51 144 -174q0 -55 -43.5 -108t-104.5 -87q-77 -42 -131 -42q-31 0 -54 20t-31 47l11 18q48 -29 108 -29q79 0 119.5 43t40.5 109t-44.5 107.5t-119.5 50.5l22 47q34 1 65 21q96 61 96 157q0 42 -24 67.5\nt-62 25.5q-24 0 -43.5 -9t-35 -29.5t-27 -44t-22.5 -63t-19.5 -75.5t-18.5 -91q-57 -294 -68 -380q-26 -190 -35 -200q-26 -31 -97 -37l-4 26q19 9 48 170l77 413q23 121 52.5 187.5t83.5 114.5q70 62 148 62q51 0 88.5 -34t37.5 -91z\"> -phase particles with contents of 1.1 wt.% and 10.1 wt.% as deduced by XRD analysis. During prolonged annealing process at 350°C/25 h, -phase disappeared, -phase content increased to 30 wt.%, and Si presence becomes more evident as deduced by XRD analysis. EDS analysis confirmed that these particles observed in the as-melt spun alloy are of lower Fe content comparing to those usually observed in the as-cast counter-part alloy. Besides, the length distribution of needle shape -particles has been shortened to be diverse from 1 to 5 μm. The as-melt spun ribbons exhibited enhancement of hardness to 277 HV and further increased during heat treatment (150°C/12 h) to 450 HV. This improvement of microstructure and hardness are the influence of microstructural refinement and modification obtained during the rapid solidification process.","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":"23 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy\",\"authors\":\"E. M. Ahmed, M. Ebrahim\",\"doi\":\"10.1155/2014/587265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Al-11 wt.% Si-11 wt.% Fe (11.29 at.% Si-5.6 at.% Fe) melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze microstructure and phase precipitations. On the basis of the aluminum peak shifts measured in the XRD scans, a solid solubility extension value of 1 at.% Si in <path id=\\\"x1D6FC\\\" d=\\\"M545 106q-67 -118 -134 -118q-24 0 -40 37.5t-30 129.5h-2q-47 -72 -103 -119.5t-108 -47.5q-47 0 -76 45.5t-29 119.5q0 113 85 204t174 91q47 0 70 -33.5t43 -119.5h3q32 47 80 140l55 13l10 -9q-47 -80 -138 -201q17 -99 27.5 -136t22.5 -37q23 0 69 61zM333 204\\nq-14 98 -31 149.5t-50 51.5q-49 0 -94 -70t-45 -164q0 -55 15.5 -86t40.5 -31q70 0 164 150z\\\"> -Al was determined. SEM investigations confirmed presence of a spherical shape -phase particles in addition to needle and spherical shape <path id=\\\"x1D6FD\\\" d=\\\"M558 587q0 -32 -14 -61t-40 -53.5t-48.5 -41t-54.5 -36.5q144 -51 144 -174q0 -55 -43.5 -108t-104.5 -87q-77 -42 -131 -42q-31 0 -54 20t-31 47l11 18q48 -29 108 -29q79 0 119.5 43t40.5 109t-44.5 107.5t-119.5 50.5l22 47q34 1 65 21q96 61 96 157q0 42 -24 67.5\\nt-62 25.5q-24 0 -43.5 -9t-35 -29.5t-27 -44t-22.5 -63t-19.5 -75.5t-18.5 -91q-57 -294 -68 -380q-26 -190 -35 -200q-26 -31 -97 -37l-4 26q19 9 48 170l77 413q23 121 52.5 187.5t83.5 114.5q70 62 148 62q51 0 88.5 -34t37.5 -91z\\\"> -phase particles with contents of 1.1 wt.% and 10.1 wt.% as deduced by XRD analysis. During prolonged annealing process at 350°C/25 h, -phase disappeared, -phase content increased to 30 wt.%, and Si presence becomes more evident as deduced by XRD analysis. EDS analysis confirmed that these particles observed in the as-melt spun alloy are of lower Fe content comparing to those usually observed in the as-cast counter-part alloy. Besides, the length distribution of needle shape -particles has been shortened to be diverse from 1 to 5 μm. The as-melt spun ribbons exhibited enhancement of hardness to 277 HV and further increased during heat treatment (150°C/12 h) to 450 HV. This improvement of microstructure and hardness are the influence of microstructural refinement and modification obtained during the rapid solidification process.\",\"PeriodicalId\":16342,\"journal\":{\"name\":\"Journal of Metallurgy\",\"volume\":\"23 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/587265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/587265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy
Al-11 wt.% Si-11 wt.% Fe (11.29 at.% Si-5.6 at.% Fe) melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze microstructure and phase precipitations. On the basis of the aluminum peak shifts measured in the XRD scans, a solid solubility extension value of 1 at.% Si in -Al was determined. SEM investigations confirmed presence of a spherical shape -phase particles in addition to needle and spherical shape -phase particles with contents of 1.1 wt.% and 10.1 wt.% as deduced by XRD analysis. During prolonged annealing process at 350°C/25 h, -phase disappeared, -phase content increased to 30 wt.%, and Si presence becomes more evident as deduced by XRD analysis. EDS analysis confirmed that these particles observed in the as-melt spun alloy are of lower Fe content comparing to those usually observed in the as-cast counter-part alloy. Besides, the length distribution of needle shape -particles has been shortened to be diverse from 1 to 5 μm. The as-melt spun ribbons exhibited enhancement of hardness to 277 HV and further increased during heat treatment (150°C/12 h) to 450 HV. This improvement of microstructure and hardness are the influence of microstructural refinement and modification obtained during the rapid solidification process.