碳钢-不锈钢双金属断裂前局部变形模式

S. Barannikova, Yu. V. Li
{"title":"碳钢-不锈钢双金属断裂前局部变形模式","authors":"S. Barannikova, Yu. V. Li","doi":"10.17073/0368-0797-2023-3-320-326","DOIUrl":null,"url":null,"abstract":"The work is devoted to the study of strain localization at macroscale level during parabolic mechanical hardening and pre-fracture under quasi-static loading of a carbon steel – stainless steel bimetal. The problem of estimating the scale of the phenomena that determine plasticity is decisive in the development of any theories of plastic deformation, in particular, dislocation theories. The main difficulty in constructing such theories is the reconciling the dislocation scales, characteristic for most deformation and mechanical hardening mechanisms, with macroscopic parameters of deformation processes. In the framework of the autowave model of localized plastic deformation, this problem can be reduced to the possibility of obtaining parameters from the results of macroscale observations of localized plastic flow development. During the experiments, it was confirmed that in a bimetal at any forming stage, a specific pattern of localization centers distribution is spontaneously generated - a pattern of localized plastic flow. The shape of such patterns is determined by the law of mechanical hardening acting in the material. It is shown that the observed localization patterns can be used as an informative feature in predicting the plasticity margin. In the process of uniaxial tension at the stage of parabolic mechanical hardening of the bimetal, the deformation mode is realized with the formation of several potential fracture centers. It was established that at the pre-fracture stage, during the time evolution of the wave pattern of deformation localization, the zone of active plastic deformation narrows, but the number of centers in it either remains the same with a decrease in the distance between them, or even increases. The result of this process is the formation of a macroscopic neck, and then fracture. At the pre-fracture stage, the collapse point indicates the place of future fracture and signals the need to stop the deformation process in order to avoid the fracture of the bimetallic material. Thus, the well-known manifestation of deformation macroscopic localization – formation of a neck – is preceded by complex phenomena of mutually coordinated motion of localized plasticity centers at the pre-fracture stage.","PeriodicalId":14630,"journal":{"name":"Izvestiya. Ferrous Metallurgy","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of localized deformation at pre-fracture stage in carbon steel – stainless steel bimetal\",\"authors\":\"S. Barannikova, Yu. V. Li\",\"doi\":\"10.17073/0368-0797-2023-3-320-326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the study of strain localization at macroscale level during parabolic mechanical hardening and pre-fracture under quasi-static loading of a carbon steel – stainless steel bimetal. The problem of estimating the scale of the phenomena that determine plasticity is decisive in the development of any theories of plastic deformation, in particular, dislocation theories. The main difficulty in constructing such theories is the reconciling the dislocation scales, characteristic for most deformation and mechanical hardening mechanisms, with macroscopic parameters of deformation processes. In the framework of the autowave model of localized plastic deformation, this problem can be reduced to the possibility of obtaining parameters from the results of macroscale observations of localized plastic flow development. During the experiments, it was confirmed that in a bimetal at any forming stage, a specific pattern of localization centers distribution is spontaneously generated - a pattern of localized plastic flow. The shape of such patterns is determined by the law of mechanical hardening acting in the material. It is shown that the observed localization patterns can be used as an informative feature in predicting the plasticity margin. In the process of uniaxial tension at the stage of parabolic mechanical hardening of the bimetal, the deformation mode is realized with the formation of several potential fracture centers. It was established that at the pre-fracture stage, during the time evolution of the wave pattern of deformation localization, the zone of active plastic deformation narrows, but the number of centers in it either remains the same with a decrease in the distance between them, or even increases. The result of this process is the formation of a macroscopic neck, and then fracture. At the pre-fracture stage, the collapse point indicates the place of future fracture and signals the need to stop the deformation process in order to avoid the fracture of the bimetallic material. Thus, the well-known manifestation of deformation macroscopic localization – formation of a neck – is preceded by complex phenomena of mutually coordinated motion of localized plasticity centers at the pre-fracture stage.\",\"PeriodicalId\":14630,\"journal\":{\"name\":\"Izvestiya. Ferrous Metallurgy\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya. Ferrous Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0368-0797-2023-3-320-326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya. Ferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2023-3-320-326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了准静态载荷下碳钢-不锈钢双金属抛物线型机械硬化和预断裂过程的宏观应变局部化问题。在任何塑性变形理论,特别是位错理论的发展中,估计决定塑性的现象的尺度的问题是决定性的。构建这类理论的主要困难在于协调大多数变形和机械硬化机制所特有的位错尺度与变形过程的宏观参数。在局部化塑性变形的自波模型框架下,这个问题可以简化为从局部化塑性流动发展的宏观观测结果中获取参数的可能性。实验证实,在双金属的任何成形阶段,都会自发产生一种特定的局部化中心分布模式——局部化塑性流动模式。这种图案的形状是由作用于材料中的机械硬化规律决定的。结果表明,观测到的局部化模式可以作为预测塑性边界的信息特征。在双金属抛物线形机械硬化阶段的单轴拉伸过程中,变形模式是通过形成几个潜在断裂中心来实现的。结果表明:在断裂前阶段,在变形局部化波形的时间演化过程中,活动塑性变形区域变窄,但活动塑性变形区域的中心数量要么保持不变,中心之间的距离减小,要么增加;这一过程的结果是形成宏观的颈部,然后断裂。在断裂前阶段,坍塌点指示了未来断裂的位置,表明需要停止变形过程,以避免双金属材料的断裂。因此,众所周知的变形宏观局部化表现——颈部的形成——是在断裂前阶段局部化塑性中心相互协调运动的复杂现象之前发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns of localized deformation at pre-fracture stage in carbon steel – stainless steel bimetal
The work is devoted to the study of strain localization at macroscale level during parabolic mechanical hardening and pre-fracture under quasi-static loading of a carbon steel – stainless steel bimetal. The problem of estimating the scale of the phenomena that determine plasticity is decisive in the development of any theories of plastic deformation, in particular, dislocation theories. The main difficulty in constructing such theories is the reconciling the dislocation scales, characteristic for most deformation and mechanical hardening mechanisms, with macroscopic parameters of deformation processes. In the framework of the autowave model of localized plastic deformation, this problem can be reduced to the possibility of obtaining parameters from the results of macroscale observations of localized plastic flow development. During the experiments, it was confirmed that in a bimetal at any forming stage, a specific pattern of localization centers distribution is spontaneously generated - a pattern of localized plastic flow. The shape of such patterns is determined by the law of mechanical hardening acting in the material. It is shown that the observed localization patterns can be used as an informative feature in predicting the plasticity margin. In the process of uniaxial tension at the stage of parabolic mechanical hardening of the bimetal, the deformation mode is realized with the formation of several potential fracture centers. It was established that at the pre-fracture stage, during the time evolution of the wave pattern of deformation localization, the zone of active plastic deformation narrows, but the number of centers in it either remains the same with a decrease in the distance between them, or even increases. The result of this process is the formation of a macroscopic neck, and then fracture. At the pre-fracture stage, the collapse point indicates the place of future fracture and signals the need to stop the deformation process in order to avoid the fracture of the bimetallic material. Thus, the well-known manifestation of deformation macroscopic localization – formation of a neck – is preceded by complex phenomena of mutually coordinated motion of localized plasticity centers at the pre-fracture stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信