从RSRQ测量得出电池负载

Vaclav Raida, M. Lerch, P. Svoboda, M. Rupp
{"title":"从RSRQ测量得出电池负载","authors":"Vaclav Raida, M. Lerch, P. Svoboda, M. Rupp","doi":"10.23919/TMA.2018.8506494","DOIUrl":null,"url":null,"abstract":"The performance of wireless systems is often interference-limited. In LTE, the parameter RSRQ is connected to the system interference. A solid and sound measurement of this parameter allows for an estimation of the current level of cell load as well as interference in the current cell, enabling us to use crowdsourced performance data for network benchmarking. However, RSRQ is not straightforward to interpret. We point out that RSRQ can be used to estimate the cell load caused by other users if it is measured at zero downlink throughput of the measuring device. In such a case we expect a positive correlation between RSRQ and achievable throughput which we confirm by measurements in a live LTE network. Conversely, we show that if the measuring device is downloading data, a wide range of different RSRQ values can be generated. As an extreme case we present measurements with strong negative correlation between RSRQ and throughput. The source codes of the network monitoring applications are often proprietary, we thus do not know if RSRQ samples are a) collected at zero downlink throughputs, b) during a downlink throughput test or c) a combination of both. In case a) RSRQ provides us precious additional knowledge about the cell load. In cases b) and c) it is merely useless if we cannot filter out the samples corresponding to nonzero downlink throughput.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Deriving Cell Load from RSRQ Measurements\",\"authors\":\"Vaclav Raida, M. Lerch, P. Svoboda, M. Rupp\",\"doi\":\"10.23919/TMA.2018.8506494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of wireless systems is often interference-limited. In LTE, the parameter RSRQ is connected to the system interference. A solid and sound measurement of this parameter allows for an estimation of the current level of cell load as well as interference in the current cell, enabling us to use crowdsourced performance data for network benchmarking. However, RSRQ is not straightforward to interpret. We point out that RSRQ can be used to estimate the cell load caused by other users if it is measured at zero downlink throughput of the measuring device. In such a case we expect a positive correlation between RSRQ and achievable throughput which we confirm by measurements in a live LTE network. Conversely, we show that if the measuring device is downloading data, a wide range of different RSRQ values can be generated. As an extreme case we present measurements with strong negative correlation between RSRQ and throughput. The source codes of the network monitoring applications are often proprietary, we thus do not know if RSRQ samples are a) collected at zero downlink throughputs, b) during a downlink throughput test or c) a combination of both. In case a) RSRQ provides us precious additional knowledge about the cell load. In cases b) and c) it is merely useless if we cannot filter out the samples corresponding to nonzero downlink throughput.\",\"PeriodicalId\":6607,\"journal\":{\"name\":\"2018 Network Traffic Measurement and Analysis Conference (TMA)\",\"volume\":\"50 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Network Traffic Measurement and Analysis Conference (TMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/TMA.2018.8506494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

无线系统的性能常常受到干扰的限制。在LTE中,RSRQ参数是用来连接系统干扰的。对该参数进行可靠的测量可以估计当前小区负载水平以及当前小区中的干扰,从而使我们能够使用众包性能数据进行网络基准测试。然而,RSRQ并不容易理解。我们指出,如果RSRQ是在测量设备的零下行吞吐量下测量的,则可以用来估计由其他用户引起的小区负载。在这种情况下,我们期望RSRQ和可实现吞吐量之间存在正相关关系,我们通过实时LTE网络中的测量来证实这一点。相反,我们表明,如果测量设备正在下载数据,则可以生成大范围不同的RSRQ值。作为一个极端的例子,我们提出了RSRQ和吞吐量之间有很强的负相关的测量。网络监控应用程序的源代码通常是专有的,因此我们不知道RSRQ样本是a)在零下行链路吞吐量时收集的,b)在下行链路吞吐量测试期间收集的,还是c)两者的组合。在a)情况下,RSRQ为我们提供了有关单元负载的宝贵额外知识。在情况b)和c)中,如果我们不能过滤掉对应于非零下行吞吐量的样本,那么它只是无用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving Cell Load from RSRQ Measurements
The performance of wireless systems is often interference-limited. In LTE, the parameter RSRQ is connected to the system interference. A solid and sound measurement of this parameter allows for an estimation of the current level of cell load as well as interference in the current cell, enabling us to use crowdsourced performance data for network benchmarking. However, RSRQ is not straightforward to interpret. We point out that RSRQ can be used to estimate the cell load caused by other users if it is measured at zero downlink throughput of the measuring device. In such a case we expect a positive correlation between RSRQ and achievable throughput which we confirm by measurements in a live LTE network. Conversely, we show that if the measuring device is downloading data, a wide range of different RSRQ values can be generated. As an extreme case we present measurements with strong negative correlation between RSRQ and throughput. The source codes of the network monitoring applications are often proprietary, we thus do not know if RSRQ samples are a) collected at zero downlink throughputs, b) during a downlink throughput test or c) a combination of both. In case a) RSRQ provides us precious additional knowledge about the cell load. In cases b) and c) it is merely useless if we cannot filter out the samples corresponding to nonzero downlink throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信