向日葵:从土壤到油

Anup Rao
{"title":"向日葵:从土壤到油","authors":"Anup Rao","doi":"10.1090/bull/1777","DOIUrl":null,"url":null,"abstract":"A sunflower is a collection of sets whose pairwise intersections are identical. In this article, we shall go sunflower-picking. We find sunflowers in several seemingly unrelated fields, before turning to discuss recent progress on the famous sunflower conjecture of Erdős and Rado, made by Alweiss, Lovett, Wu, and Zhang, as well as a related resolution of the threshold vs expectation threshold conjecture of Kahn and Kalai discovered by Park and Pham. We give short proofs for both of these results.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sunflowers: from soil to oil\",\"authors\":\"Anup Rao\",\"doi\":\"10.1090/bull/1777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sunflower is a collection of sets whose pairwise intersections are identical. In this article, we shall go sunflower-picking. We find sunflowers in several seemingly unrelated fields, before turning to discuss recent progress on the famous sunflower conjecture of Erdős and Rado, made by Alweiss, Lovett, Wu, and Zhang, as well as a related resolution of the threshold vs expectation threshold conjecture of Kahn and Kalai discovered by Park and Pham. We give short proofs for both of these results.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

向日葵是集合的集合,这些集合的成对相交是相同的。在这篇文章中,我们将去摘向日葵。我们在几个看似不相关的领域中发现了向日葵,然后讨论了Alweiss、Lovett、Wu和Zhang提出的著名的向日葵猜想Erdős和Rado的最新进展,以及Park和Pham发现的Kahn和Kalai的阈值与期望阈值猜想的相关解决方案。我们对这两个结果都给出了简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sunflowers: from soil to oil
A sunflower is a collection of sets whose pairwise intersections are identical. In this article, we shall go sunflower-picking. We find sunflowers in several seemingly unrelated fields, before turning to discuss recent progress on the famous sunflower conjecture of Erdős and Rado, made by Alweiss, Lovett, Wu, and Zhang, as well as a related resolution of the threshold vs expectation threshold conjecture of Kahn and Kalai discovered by Park and Pham. We give short proofs for both of these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信