数据库内ML方法的探索

Steffen Kläbe, Stefan Hagedorn, K. Sattler
{"title":"数据库内ML方法的探索","authors":"Steffen Kläbe, Stefan Hagedorn, K. Sattler","doi":"10.48786/edbt.2023.25","DOIUrl":null,"url":null,"abstract":"Database systems are no longer used only for the storage of plain structured data and basic analyses. An increasing role is also played by the integration of ML models, e.g., neural networks with specialized frameworks, and their use for classification or prediction. However, using such models on data stored in a database system might require downloading the data and performing the computations outside. In this paper, we evaluate approaches for integrating the ML inference step as a special query operator - the ModelJoin. We explore several options for this integration on different abstraction levels: relational representation of the models as well as SQL queries for inference, the use of UDFs, the use of APIs to existing ML runtimes and a native implementation of the ModelJoin as a query operator supporting both CPU and GPU execution. Our evaluation results show that integrating ML runtimes over APIs perform similarly to a native operator while being generic to support arbitrary model types. The solution of relational representation and SQL queries is most portable and works well for smaller inputs without any changes needed in the database engine.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"17 1","pages":"311-323"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploration of Approaches for In-Database ML\",\"authors\":\"Steffen Kläbe, Stefan Hagedorn, K. Sattler\",\"doi\":\"10.48786/edbt.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Database systems are no longer used only for the storage of plain structured data and basic analyses. An increasing role is also played by the integration of ML models, e.g., neural networks with specialized frameworks, and their use for classification or prediction. However, using such models on data stored in a database system might require downloading the data and performing the computations outside. In this paper, we evaluate approaches for integrating the ML inference step as a special query operator - the ModelJoin. We explore several options for this integration on different abstraction levels: relational representation of the models as well as SQL queries for inference, the use of UDFs, the use of APIs to existing ML runtimes and a native implementation of the ModelJoin as a query operator supporting both CPU and GPU execution. Our evaluation results show that integrating ML runtimes over APIs perform similarly to a native operator while being generic to support arbitrary model types. The solution of relational representation and SQL queries is most portable and works well for smaller inputs without any changes needed in the database engine.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"17 1\",\"pages\":\"311-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2023.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据库系统不再仅仅用于存储简单的结构化数据和进行基本分析。机器学习模型的集成也发挥着越来越重要的作用,例如,具有专门框架的神经网络,以及它们用于分类或预测。但是,对存储在数据库系统中的数据使用这种模型可能需要下载数据并在外部执行计算。在本文中,我们评估了将ML推理步骤集成为一个特殊查询操作符- ModelJoin的方法。我们在不同的抽象层次上探索了这种集成的几个选项:模型的关系表示以及用于推理的SQL查询、udf的使用、对现有ML运行时使用api以及将ModelJoin作为支持CPU和GPU执行的查询操作符的本地实现。我们的评估结果表明,在api上集成ML运行时的性能与本机操作符相似,同时具有泛型以支持任意模型类型。关系表示和SQL查询的解决方案是最可移植的,并且可以很好地用于较小的输入,而无需在数据库引擎中进行任何更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Approaches for In-Database ML
Database systems are no longer used only for the storage of plain structured data and basic analyses. An increasing role is also played by the integration of ML models, e.g., neural networks with specialized frameworks, and their use for classification or prediction. However, using such models on data stored in a database system might require downloading the data and performing the computations outside. In this paper, we evaluate approaches for integrating the ML inference step as a special query operator - the ModelJoin. We explore several options for this integration on different abstraction levels: relational representation of the models as well as SQL queries for inference, the use of UDFs, the use of APIs to existing ML runtimes and a native implementation of the ModelJoin as a query operator supporting both CPU and GPU execution. Our evaluation results show that integrating ML runtimes over APIs perform similarly to a native operator while being generic to support arbitrary model types. The solution of relational representation and SQL queries is most portable and works well for smaller inputs without any changes needed in the database engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信