基于自构造小波神经网络的直流电机智能控制

M. Farahani, Amir Reza Zare Bidaki, Mohammad Enshaeieh
{"title":"基于自构造小波神经网络的直流电机智能控制","authors":"M. Farahani, Amir Reza Zare Bidaki, Mohammad Enshaeieh","doi":"10.1080/21642583.2014.895971","DOIUrl":null,"url":null,"abstract":"This paper proposes an intelligent method to control the speed of a DC motor. This controller is a self-constructing wavelet neural network (SCWNN) in which the self-constructing and training algorithms are simultaneously performed. At first, there are no wavelets in the wavelet layer; they are automatically generated in the online control process. In order to increase the convergence speed of the proposed controller, adaptive learning rates (ALRs) updated at each sampling time are used. In the online control process, no identifier is used to approximate the dynamic of the controlled plant, because of the learning ability of the proposed controller. Several simulations are used to demonstrate the effectiveness and adaptiveness of SCWNN.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"9 1","pages":"261 - 267"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Intelligent control of a DC motor using a self-constructing wavelet neural network\",\"authors\":\"M. Farahani, Amir Reza Zare Bidaki, Mohammad Enshaeieh\",\"doi\":\"10.1080/21642583.2014.895971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an intelligent method to control the speed of a DC motor. This controller is a self-constructing wavelet neural network (SCWNN) in which the self-constructing and training algorithms are simultaneously performed. At first, there are no wavelets in the wavelet layer; they are automatically generated in the online control process. In order to increase the convergence speed of the proposed controller, adaptive learning rates (ALRs) updated at each sampling time are used. In the online control process, no identifier is used to approximate the dynamic of the controlled plant, because of the learning ability of the proposed controller. Several simulations are used to demonstrate the effectiveness and adaptiveness of SCWNN.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":\"9 1\",\"pages\":\"261 - 267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2014.895971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.895971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种智能控制直流电机转速的方法。该控制器是一种自构造小波神经网络(SCWNN),其自构造算法和训练算法同时进行。首先,小波层中没有小波;它们是在线控制过程中自动生成的。为了提高控制器的收敛速度,采用了每次采样时更新的自适应学习率(alr)。在在线控制过程中,由于所提出的控制器具有良好的学习能力,因此不使用辨识符来逼近被控对象的动态。仿真结果验证了该方法的有效性和自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent control of a DC motor using a self-constructing wavelet neural network
This paper proposes an intelligent method to control the speed of a DC motor. This controller is a self-constructing wavelet neural network (SCWNN) in which the self-constructing and training algorithms are simultaneously performed. At first, there are no wavelets in the wavelet layer; they are automatically generated in the online control process. In order to increase the convergence speed of the proposed controller, adaptive learning rates (ALRs) updated at each sampling time are used. In the online control process, no identifier is used to approximate the dynamic of the controlled plant, because of the learning ability of the proposed controller. Several simulations are used to demonstrate the effectiveness and adaptiveness of SCWNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信