saint-venant方程混合问题数值解的稳定性

IF 0.4 Q4 MATHEMATICS
R. Aloev, I. Abdullah, S. Juraev, A. Akbarova
{"title":"saint-venant方程混合问题数值解的稳定性","authors":"R. Aloev, I. Abdullah, S. Juraev, A. Akbarova","doi":"10.46754/jmsi.2021.12.006","DOIUrl":null,"url":null,"abstract":"This article is devoted to the construction and study of the exponential stability of an explicit upwind difference scheme for a mixed problem for the linear system of the Saint Venant equation. For the numerical solution of the mixed problem for the linear system of the Saint Venant equation, an explicit upwind difference scheme is constructed. For a numerical solution, a discrete Lyapunov function is constructed and an a priori estimate for it is obtained. On the basis of the discrete Lyapunov function, the exponential stability of the numerical solution of the initial-boundary-value difference problem of the mixed problem for the linear system of the Saint Venantequation is proved. A theorem on the exponential stability of the numerical solution of the initial-boundary-value difference problem is proved. The behavior of the discrete Lyapunov function is numerically investigated depending on the algebraic condition of exponential stability of the numerical solution of the mixed problem. The results of the theorem on the exponential stability of the numerical solution are confirmed by a specific example of an open channel flow problem.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"12 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STABILITY OF THE NUMERICAL SOLUTION FOR THE MIXED PROBLEM OF THE SAINT-VENANT EQUATIONS\",\"authors\":\"R. Aloev, I. Abdullah, S. Juraev, A. Akbarova\",\"doi\":\"10.46754/jmsi.2021.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to the construction and study of the exponential stability of an explicit upwind difference scheme for a mixed problem for the linear system of the Saint Venant equation. For the numerical solution of the mixed problem for the linear system of the Saint Venant equation, an explicit upwind difference scheme is constructed. For a numerical solution, a discrete Lyapunov function is constructed and an a priori estimate for it is obtained. On the basis of the discrete Lyapunov function, the exponential stability of the numerical solution of the initial-boundary-value difference problem of the mixed problem for the linear system of the Saint Venantequation is proved. A theorem on the exponential stability of the numerical solution of the initial-boundary-value difference problem is proved. The behavior of the discrete Lyapunov function is numerically investigated depending on the algebraic condition of exponential stability of the numerical solution of the mixed problem. The results of the theorem on the exponential stability of the numerical solution are confirmed by a specific example of an open channel flow problem.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46754/jmsi.2021.12.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46754/jmsi.2021.12.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Saint Venant方程线性系统混合问题的显式迎风差分格式的指数稳定性。对于Saint Venant方程线性系统混合问题的数值解,构造了显式迎风差分格式。对于离散Lyapunov函数的数值解,构造了离散Lyapunov函数,并对其进行了先验估计。在离散Lyapunov函数的基础上,证明了Saint Venantequation线性系统混合问题初边值差分问题数值解的指数稳定性。证明了初边值差分问题数值解的指数稳定性定理。根据混合问题数值解的指数稳定性的代数条件,对离散Lyapunov函数的行为进行了数值研究。通过明渠流动问题的具体算例,验证了数值解的指数稳定性定理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STABILITY OF THE NUMERICAL SOLUTION FOR THE MIXED PROBLEM OF THE SAINT-VENANT EQUATIONS
This article is devoted to the construction and study of the exponential stability of an explicit upwind difference scheme for a mixed problem for the linear system of the Saint Venant equation. For the numerical solution of the mixed problem for the linear system of the Saint Venant equation, an explicit upwind difference scheme is constructed. For a numerical solution, a discrete Lyapunov function is constructed and an a priori estimate for it is obtained. On the basis of the discrete Lyapunov function, the exponential stability of the numerical solution of the initial-boundary-value difference problem of the mixed problem for the linear system of the Saint Venantequation is proved. A theorem on the exponential stability of the numerical solution of the initial-boundary-value difference problem is proved. The behavior of the discrete Lyapunov function is numerically investigated depending on the algebraic condition of exponential stability of the numerical solution of the mixed problem. The results of the theorem on the exponential stability of the numerical solution are confirmed by a specific example of an open channel flow problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信