{"title":"碎片分子轨道法中碎片间相互作用能量矩阵的随机矩阵理论","authors":"M. Yamanaka","doi":"10.1273/CBIJ.18.123","DOIUrl":null,"url":null,"abstract":"The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random matrix theory for an inter-fragment interaction energy matrix in fragment molecular orbital method\",\"authors\":\"M. Yamanaka\",\"doi\":\"10.1273/CBIJ.18.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.\",\"PeriodicalId\":40659,\"journal\":{\"name\":\"Chem-Bio Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem-Bio Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1273/CBIJ.18.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.18.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Random matrix theory for an inter-fragment interaction energy matrix in fragment molecular orbital method
The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.