碎片分子轨道法中碎片间相互作用能量矩阵的随机矩阵理论

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
M. Yamanaka
{"title":"碎片分子轨道法中碎片间相互作用能量矩阵的随机矩阵理论","authors":"M. Yamanaka","doi":"10.1273/CBIJ.18.123","DOIUrl":null,"url":null,"abstract":"The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random matrix theory for an inter-fragment interaction energy matrix in fragment molecular orbital method\",\"authors\":\"M. Yamanaka\",\"doi\":\"10.1273/CBIJ.18.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.\",\"PeriodicalId\":40659,\"journal\":{\"name\":\"Chem-Bio Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem-Bio Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1273/CBIJ.18.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.18.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

利用随机矩阵理论分析了碎片分子轨道法中碎片间相互作用能量矩阵的统计性质。将特征值和特征向量分布、逆参与率和展开特征值统计量与相应的随机矩阵集合进行了比较。利用随机矩阵的逆参与比理论对具有强相关性的碎片进行聚类分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random matrix theory for an inter-fragment interaction energy matrix in fragment molecular orbital method
The statistical properties of the inter-fragment interaction energy matrix of the fragment molecular orbital method are analyzed using the random matrix theory. The eigenvalue and eigenvector distributions, the inverse participation ratio, and the unfolded eigenvalue statistics are compared with the corresponding random matrix ensemble. Cluster analysis of the fragments with strong correlations is presented using the inverse participation ratio of the random matrix theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信