基于深度学习的SEM图像去噪与轮廓图像估计

N. Chaudhary, S. Savari, Varvara Brackmann, M. Friedrich
{"title":"基于深度学习的SEM图像去噪与轮廓图像估计","authors":"N. Chaudhary, S. Savari, Varvara Brackmann, M. Friedrich","doi":"10.1109/ASMC49169.2020.9185250","DOIUrl":null,"url":null,"abstract":"The estimation of line and contour geometries from real SEM images is a challenging problem due to the corruption of such images by Poisson noise, edge effects, and other SEM artifacts. We attempt simultaneous contour edge image prediction and SEM image denoising using a deep convolutional neural network LineNet2. To capture a range of edge effects in real SEM images, we simulate a training dataset of rough line SEM images with random edge effect parameters. We train the LineNet2 network on this training dataset and randomly rotate the images during the training phase. The retrained LineNet2 shows the ability to denoise real SEM images of line and contour geometries. We measure the line edge roughness (LER) parameter in isolated and dense regions of rough line images through multiple LER methods. Our experiments also demonstrate that the network can learn to recognize contour edges just by rotating rough line images.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SEM Image Denoising and Contour Image Estimation using Deep Learning\",\"authors\":\"N. Chaudhary, S. Savari, Varvara Brackmann, M. Friedrich\",\"doi\":\"10.1109/ASMC49169.2020.9185250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of line and contour geometries from real SEM images is a challenging problem due to the corruption of such images by Poisson noise, edge effects, and other SEM artifacts. We attempt simultaneous contour edge image prediction and SEM image denoising using a deep convolutional neural network LineNet2. To capture a range of edge effects in real SEM images, we simulate a training dataset of rough line SEM images with random edge effect parameters. We train the LineNet2 network on this training dataset and randomly rotate the images during the training phase. The retrained LineNet2 shows the ability to denoise real SEM images of line and contour geometries. We measure the line edge roughness (LER) parameter in isolated and dense regions of rough line images through multiple LER methods. Our experiments also demonstrate that the network can learn to recognize contour edges just by rotating rough line images.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于泊松噪声、边缘效应和其他SEM伪影的破坏,从真实的SEM图像中估计直线和轮廓几何形状是一个具有挑战性的问题。我们尝试使用深度卷积神经网络LineNet2同时进行轮廓边缘图像预测和扫描电镜图像去噪。为了捕获真实扫描电镜图像中的一系列边缘效应,我们模拟了一个带有随机边缘效应参数的粗糙线扫描电镜图像训练数据集。我们在这个训练数据集上训练LineNet2网络,并在训练阶段随机旋转图像。重新训练的LineNet2显示了对真实的直线和轮廓几何图像去噪的能力。通过多种线边缘粗糙度方法,对粗线图像的隔离区和密集区进行线边缘粗糙度参数的测量。我们的实验还表明,网络可以通过旋转粗糙的线图像来学习识别轮廓边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEM Image Denoising and Contour Image Estimation using Deep Learning
The estimation of line and contour geometries from real SEM images is a challenging problem due to the corruption of such images by Poisson noise, edge effects, and other SEM artifacts. We attempt simultaneous contour edge image prediction and SEM image denoising using a deep convolutional neural network LineNet2. To capture a range of edge effects in real SEM images, we simulate a training dataset of rough line SEM images with random edge effect parameters. We train the LineNet2 network on this training dataset and randomly rotate the images during the training phase. The retrained LineNet2 shows the ability to denoise real SEM images of line and contour geometries. We measure the line edge roughness (LER) parameter in isolated and dense regions of rough line images through multiple LER methods. Our experiments also demonstrate that the network can learn to recognize contour edges just by rotating rough line images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信