热固性聚酯弯曲载荷断裂面的识别

Nusyirwan, Mutya Rani, Rully Pratama
{"title":"热固性聚酯弯曲载荷断裂面的识别","authors":"Nusyirwan, Mutya Rani, Rully Pratama","doi":"10.22219/jemmme.v7i1.23086","DOIUrl":null,"url":null,"abstract":"In this research, an attempt was made to improve the brittle nature of the Unsaturated Polyester (UP) polymer which cannot undergo plastic deformation to be improved to become more resilient by adding Thermoset Vinyl Ester and Methyl Methacrylate (MMA). To show the change in the toughness of the polyester material, a test is carried out to provide a tensile load and a flexural load until the material breaks This work reports the successful fabrication of polyester blends by mixing vinyl esters with different percentages. The test shows that there is a linear relationship between the shape of the fracture surface due to bending loads and observations through SEM which are directly related to the flexural stress properties with the fracture surface morphology. The mixture of polyester with 40% vinyl ester showed the highest flexural stress of 126.88 MPa while for pure polyester of 49.71 MPa this showed an increase of 255.24% compared to pure polyester. This shows that the addition of vinyl ester to polyester resulted in an increase in the toughness of the polyester, but for 100% vinyl ester the return stress decreased by 56.50 MPa. This indicates that due to the breaking of some of the polyester chain networks causes a decrease in the structural stiffness, which results in an increase in the plastic deformation zone fraction. ","PeriodicalId":32811,"journal":{"name":"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the fracture surface of thermoset polyester due to bending load\",\"authors\":\"Nusyirwan, Mutya Rani, Rully Pratama\",\"doi\":\"10.22219/jemmme.v7i1.23086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, an attempt was made to improve the brittle nature of the Unsaturated Polyester (UP) polymer which cannot undergo plastic deformation to be improved to become more resilient by adding Thermoset Vinyl Ester and Methyl Methacrylate (MMA). To show the change in the toughness of the polyester material, a test is carried out to provide a tensile load and a flexural load until the material breaks This work reports the successful fabrication of polyester blends by mixing vinyl esters with different percentages. The test shows that there is a linear relationship between the shape of the fracture surface due to bending loads and observations through SEM which are directly related to the flexural stress properties with the fracture surface morphology. The mixture of polyester with 40% vinyl ester showed the highest flexural stress of 126.88 MPa while for pure polyester of 49.71 MPa this showed an increase of 255.24% compared to pure polyester. This shows that the addition of vinyl ester to polyester resulted in an increase in the toughness of the polyester, but for 100% vinyl ester the return stress decreased by 56.50 MPa. This indicates that due to the breaking of some of the polyester chain networks causes a decrease in the structural stiffness, which results in an increase in the plastic deformation zone fraction. \",\"PeriodicalId\":32811,\"journal\":{\"name\":\"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22219/jemmme.v7i1.23086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEMMME Journal of Energy Mechanical Material and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22219/jemmme.v7i1.23086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究试图通过添加热固性乙烯基酯和甲基丙烯酸甲酯(MMA)来改善不饱和聚酯(UP)聚合物的脆性,使其不能进行塑性变形,从而使其具有更强的弹性。为了显示聚酯材料韧性的变化,进行了拉伸载荷和弯曲载荷的测试,直到材料断裂。这项工作报告了通过混合不同百分比的乙烯酯成功制造聚酯共混物。试验结果表明,弯曲载荷作用下的断口形状与扫描电镜观察结果呈线性关系,这与弯曲应力性能与断口形貌直接相关。含40%乙烯基酯的聚酯的弯曲应力最高,为126.88 MPa,纯聚酯为49.71 MPa,比纯聚酯提高了255.24%。结果表明,乙烯基酯的加入提高了聚酯的韧性,但对于100%乙烯基酯,聚酯的回应力降低了56.50 MPa。这表明,由于聚酯链网络的某些断裂导致结构刚度降低,从而导致塑性变形区分数增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of the fracture surface of thermoset polyester due to bending load
In this research, an attempt was made to improve the brittle nature of the Unsaturated Polyester (UP) polymer which cannot undergo plastic deformation to be improved to become more resilient by adding Thermoset Vinyl Ester and Methyl Methacrylate (MMA). To show the change in the toughness of the polyester material, a test is carried out to provide a tensile load and a flexural load until the material breaks This work reports the successful fabrication of polyester blends by mixing vinyl esters with different percentages. The test shows that there is a linear relationship between the shape of the fracture surface due to bending loads and observations through SEM which are directly related to the flexural stress properties with the fracture surface morphology. The mixture of polyester with 40% vinyl ester showed the highest flexural stress of 126.88 MPa while for pure polyester of 49.71 MPa this showed an increase of 255.24% compared to pure polyester. This shows that the addition of vinyl ester to polyester resulted in an increase in the toughness of the polyester, but for 100% vinyl ester the return stress decreased by 56.50 MPa. This indicates that due to the breaking of some of the polyester chain networks causes a decrease in the structural stiffness, which results in an increase in the plastic deformation zone fraction. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信