复合材料处理矿山酸性水的吸附-混凝机理研究

Liping Xiao, Zhe Liu, Xuefei Luan, Jichi Bai
{"title":"复合材料处理矿山酸性水的吸附-混凝机理研究","authors":"Liping Xiao, Zhe Liu, Xuefei Luan, Jichi Bai","doi":"10.15273/GREE.2017.02.030","DOIUrl":null,"url":null,"abstract":"In order to study the removal efficiency of Cu 2+ from acid mine drainage by prepared bentonite - steel slag composite particle s, adsorption experiment was carried out. The composite particles were characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectrometer (FTIR). The results show that: the composite particles can release alkali to neutralize the acid of acid mine drainage ; t he adsorption and chemical precipitation of Cu 2+ occur red in the whole reaction process ; t he removal amount of composite particles on Cu 2+ was 9.88 mg/g when the reaction reached equilibrium ; the FTIR spectra reveal ed the existence of surface complexation ; the SEM micrographs suggest ed that the composite particles would continue to adsorb and coagulate Cu 2+ after the composite particles surface adsorbing Cu 2+ and forming precipitate, namely, there was synergistic reaction of adsorption and coagulation ; the XRD patterns further showed the existence of cation exchange and revealed that the states of Cu 2+ in the surface of the composite particles was Cu -Si-O mineral phase and CuO(Cu(OH) 2 ) polymerization precipitation. The bentonite-steel slag composite particles which can play a role of adsorption-coagulation synergism are excellent multifunctional g reen environmental mineral materials to treat acid mine drainage containing heavy metal ions.","PeriodicalId":21067,"journal":{"name":"Resources Environment & Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption-Coagulation Mechanism of Composites in Treating Acid Mine Drainage\",\"authors\":\"Liping Xiao, Zhe Liu, Xuefei Luan, Jichi Bai\",\"doi\":\"10.15273/GREE.2017.02.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the removal efficiency of Cu 2+ from acid mine drainage by prepared bentonite - steel slag composite particle s, adsorption experiment was carried out. The composite particles were characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectrometer (FTIR). The results show that: the composite particles can release alkali to neutralize the acid of acid mine drainage ; t he adsorption and chemical precipitation of Cu 2+ occur red in the whole reaction process ; t he removal amount of composite particles on Cu 2+ was 9.88 mg/g when the reaction reached equilibrium ; the FTIR spectra reveal ed the existence of surface complexation ; the SEM micrographs suggest ed that the composite particles would continue to adsorb and coagulate Cu 2+ after the composite particles surface adsorbing Cu 2+ and forming precipitate, namely, there was synergistic reaction of adsorption and coagulation ; the XRD patterns further showed the existence of cation exchange and revealed that the states of Cu 2+ in the surface of the composite particles was Cu -Si-O mineral phase and CuO(Cu(OH) 2 ) polymerization precipitation. The bentonite-steel slag composite particles which can play a role of adsorption-coagulation synergism are excellent multifunctional g reen environmental mineral materials to treat acid mine drainage containing heavy metal ions.\",\"PeriodicalId\":21067,\"journal\":{\"name\":\"Resources Environment & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Environment & Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.15273/GREE.2017.02.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment & Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.15273/GREE.2017.02.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究制备的膨润土-钢渣复合颗粒对酸性矿山废水中Cu 2+的去除效果,进行了吸附实验。采用x射线衍射分析技术(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱仪(FTIR)对复合颗粒进行了表征。结果表明:复合颗粒能释放碱,中和酸性矿井水中的酸;Cu 2+的吸附和化学沉淀贯穿于整个反应过程;反应达到平衡时,复合颗粒对cu2 +的去除率为9.88 mg/g;FTIR光谱显示了表面络合的存在;SEM显微图表明,复合颗粒表面吸附cu2 +并形成沉淀后,仍会继续吸附和凝固cu2 +,即存在吸附和凝固的协同反应;XRD谱图进一步表明了阳离子交换的存在,表明复合颗粒表面的cu2 +形态为Cu -Si-O矿物相和CuO(Cu(OH) 2)聚合沉淀。膨润土-钢渣复合颗粒具有吸附-混凝协同作用,是处理含重金属酸性矿山废水的优良多功能绿色环保矿物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption-Coagulation Mechanism of Composites in Treating Acid Mine Drainage
In order to study the removal efficiency of Cu 2+ from acid mine drainage by prepared bentonite - steel slag composite particle s, adsorption experiment was carried out. The composite particles were characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectrometer (FTIR). The results show that: the composite particles can release alkali to neutralize the acid of acid mine drainage ; t he adsorption and chemical precipitation of Cu 2+ occur red in the whole reaction process ; t he removal amount of composite particles on Cu 2+ was 9.88 mg/g when the reaction reached equilibrium ; the FTIR spectra reveal ed the existence of surface complexation ; the SEM micrographs suggest ed that the composite particles would continue to adsorb and coagulate Cu 2+ after the composite particles surface adsorbing Cu 2+ and forming precipitate, namely, there was synergistic reaction of adsorption and coagulation ; the XRD patterns further showed the existence of cation exchange and revealed that the states of Cu 2+ in the surface of the composite particles was Cu -Si-O mineral phase and CuO(Cu(OH) 2 ) polymerization precipitation. The bentonite-steel slag composite particles which can play a role of adsorption-coagulation synergism are excellent multifunctional g reen environmental mineral materials to treat acid mine drainage containing heavy metal ions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信