{"title":"光电封装盖变形和翘曲预测的FEA和DOE分析","authors":"N. Bajad, D. Santos, K. Srihari, V. Venkatadri","doi":"10.23919/PanPacific48324.2020.9059437","DOIUrl":null,"url":null,"abstract":"A design of experiment (DOE) analysis is reported on data from warpage simulations using finite element analysis (FEA) of a lidded electronics package. Warpage in a lid of an optical electronics package can detrimentally affect the reliability of the package as well as its optical performance. The present study focuses on the variety of materials and designs of lids relevant to recent technologies in electronics packaging. The FEA formulation in this study accurately predicts deformation and warpage in the elastic region with optimal computational time achieved through a choice of boundary conditions and mesh sensitivity studies. This study mainly focuses on how warpage is affecting the lid deformation and techniques to characterize it. FEA is used to create a prototype which is similar to the actual product. The experiment is designed considering different variables such as both the design and the material of the lid. DOE and subsequent statistical analyses are applied to understand the correlation between these parameters. The most significant parameter in terms of the warpage deformation is addressed. Based on this study, the appropriate design and material are suggested for the development of the lid over the package. This becomes helpful when there is an optoelectronic package undergoing thermomechanical loading; warpage may not only adversely affect solder joints but other parts of the package as well. So, in this work, characterization of the lid of the package affected by warpage is the focus area. The analysis indicates that there is no significant interaction between the two parameters expected to affect the warpage in the lid. Material properties of the lid are found to have a greater effect on the warpage of the lid as compared to variabilities introduced in lid designs in this study. This study will be helpful for the development of technologically advanced packages associated with optoelectronics.","PeriodicalId":6691,"journal":{"name":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"7 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An FEA and DOE Analysis to Predict Deformation and Warpage of Optoelectronics Package Lids\",\"authors\":\"N. Bajad, D. Santos, K. Srihari, V. Venkatadri\",\"doi\":\"10.23919/PanPacific48324.2020.9059437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design of experiment (DOE) analysis is reported on data from warpage simulations using finite element analysis (FEA) of a lidded electronics package. Warpage in a lid of an optical electronics package can detrimentally affect the reliability of the package as well as its optical performance. The present study focuses on the variety of materials and designs of lids relevant to recent technologies in electronics packaging. The FEA formulation in this study accurately predicts deformation and warpage in the elastic region with optimal computational time achieved through a choice of boundary conditions and mesh sensitivity studies. This study mainly focuses on how warpage is affecting the lid deformation and techniques to characterize it. FEA is used to create a prototype which is similar to the actual product. The experiment is designed considering different variables such as both the design and the material of the lid. DOE and subsequent statistical analyses are applied to understand the correlation between these parameters. The most significant parameter in terms of the warpage deformation is addressed. Based on this study, the appropriate design and material are suggested for the development of the lid over the package. This becomes helpful when there is an optoelectronic package undergoing thermomechanical loading; warpage may not only adversely affect solder joints but other parts of the package as well. So, in this work, characterization of the lid of the package affected by warpage is the focus area. The analysis indicates that there is no significant interaction between the two parameters expected to affect the warpage in the lid. Material properties of the lid are found to have a greater effect on the warpage of the lid as compared to variabilities introduced in lid designs in this study. This study will be helpful for the development of technologically advanced packages associated with optoelectronics.\",\"PeriodicalId\":6691,\"journal\":{\"name\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"volume\":\"7 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/PanPacific48324.2020.9059437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PanPacific48324.2020.9059437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An FEA and DOE Analysis to Predict Deformation and Warpage of Optoelectronics Package Lids
A design of experiment (DOE) analysis is reported on data from warpage simulations using finite element analysis (FEA) of a lidded electronics package. Warpage in a lid of an optical electronics package can detrimentally affect the reliability of the package as well as its optical performance. The present study focuses on the variety of materials and designs of lids relevant to recent technologies in electronics packaging. The FEA formulation in this study accurately predicts deformation and warpage in the elastic region with optimal computational time achieved through a choice of boundary conditions and mesh sensitivity studies. This study mainly focuses on how warpage is affecting the lid deformation and techniques to characterize it. FEA is used to create a prototype which is similar to the actual product. The experiment is designed considering different variables such as both the design and the material of the lid. DOE and subsequent statistical analyses are applied to understand the correlation between these parameters. The most significant parameter in terms of the warpage deformation is addressed. Based on this study, the appropriate design and material are suggested for the development of the lid over the package. This becomes helpful when there is an optoelectronic package undergoing thermomechanical loading; warpage may not only adversely affect solder joints but other parts of the package as well. So, in this work, characterization of the lid of the package affected by warpage is the focus area. The analysis indicates that there is no significant interaction between the two parameters expected to affect the warpage in the lid. Material properties of the lid are found to have a greater effect on the warpage of the lid as compared to variabilities introduced in lid designs in this study. This study will be helpful for the development of technologically advanced packages associated with optoelectronics.