Ya-Qiong Wang, Shuoshuo Xu, Rui Ren, Shuangzhuo Zhang, Z. Ren
{"title":"双管互补通风系统在国内大坡度公路隧道中的应用","authors":"Ya-Qiong Wang, Shuoshuo Xu, Rui Ren, Shuangzhuo Zhang, Z. Ren","doi":"10.1080/14733315.2018.1549305","DOIUrl":null,"url":null,"abstract":"Abstract To solve the imbalanced problem of wind pressure between left tunnel and right tunnel in the large-slopping tunnel, the complementary ventilation system is proposed, and the design theory and calculation method are also discussed. Results from a experiment carried out in a model tunnel (1:10) with complementary ventilation are presented and applied to the Dabieshan tunnel. It is found that the twin-tube complementary ventilation system can bridge two tunnels and exchange air between tunnels to ensure adequate air quality. The fresh air in the downhill tunnel can be transfer into the uphill tunnel to dilute air in the uphill tunnel. Field measurements were performed in the Dabieshan tunnel on wind speed, CO concentration, and VI (visibility index) concentration. Measurement results also indicate that the twin-tube complementary ventilation system can meet the ventilation requirements for tunnels. Compared with traditional ventilation systems, the complementary ventilation can be used to ensure adequate air quality in tunnels by eliminating the ventilation shaft in uphill tunnel and saving initial investments and operation costs.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"28 1","pages":"63 - 82"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Application of the twin-tube complementary ventilation system in large-slopping road tunnels in China\",\"authors\":\"Ya-Qiong Wang, Shuoshuo Xu, Rui Ren, Shuangzhuo Zhang, Z. Ren\",\"doi\":\"10.1080/14733315.2018.1549305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To solve the imbalanced problem of wind pressure between left tunnel and right tunnel in the large-slopping tunnel, the complementary ventilation system is proposed, and the design theory and calculation method are also discussed. Results from a experiment carried out in a model tunnel (1:10) with complementary ventilation are presented and applied to the Dabieshan tunnel. It is found that the twin-tube complementary ventilation system can bridge two tunnels and exchange air between tunnels to ensure adequate air quality. The fresh air in the downhill tunnel can be transfer into the uphill tunnel to dilute air in the uphill tunnel. Field measurements were performed in the Dabieshan tunnel on wind speed, CO concentration, and VI (visibility index) concentration. Measurement results also indicate that the twin-tube complementary ventilation system can meet the ventilation requirements for tunnels. Compared with traditional ventilation systems, the complementary ventilation can be used to ensure adequate air quality in tunnels by eliminating the ventilation shaft in uphill tunnel and saving initial investments and operation costs.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"28 1\",\"pages\":\"63 - 82\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2018.1549305\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2018.1549305","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Application of the twin-tube complementary ventilation system in large-slopping road tunnels in China
Abstract To solve the imbalanced problem of wind pressure between left tunnel and right tunnel in the large-slopping tunnel, the complementary ventilation system is proposed, and the design theory and calculation method are also discussed. Results from a experiment carried out in a model tunnel (1:10) with complementary ventilation are presented and applied to the Dabieshan tunnel. It is found that the twin-tube complementary ventilation system can bridge two tunnels and exchange air between tunnels to ensure adequate air quality. The fresh air in the downhill tunnel can be transfer into the uphill tunnel to dilute air in the uphill tunnel. Field measurements were performed in the Dabieshan tunnel on wind speed, CO concentration, and VI (visibility index) concentration. Measurement results also indicate that the twin-tube complementary ventilation system can meet the ventilation requirements for tunnels. Compared with traditional ventilation systems, the complementary ventilation can be used to ensure adequate air quality in tunnels by eliminating the ventilation shaft in uphill tunnel and saving initial investments and operation costs.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).