Z. Zamkotowicz, B. Augustyn, P. Kumor, D. Kapinos, J. Żelechowski, M. Bigaj
{"title":"用多组分硅合金铸造小直径钢锭","authors":"Z. Zamkotowicz, B. Augustyn, P. Kumor, D. Kapinos, J. Żelechowski, M. Bigaj","doi":"10.7494/MAFE.2014.40.3.175","DOIUrl":null,"url":null,"abstract":"The casting of ingots from aluminum alloys with a small range of solidification temperatures currently poses no major technical problems. On the other hand, problems do occur when multicomponent alloys containing elements such as Cu, Zn, or Mg are cast. This applies to alloys both wrought and cast. For these alloys, the differences in temperature starting and ending the solidification process reach 160°C. The difficulties are even more pronounced when the diameter of the cast ingot is less than 100 mm. Casting small-diameter ingots requires a very careful selection of parameters, which – for ingots with a diameter of about 70 mm – usually involve very high casting rates of up to 400 mm/min. The formation of a subsurface zone in the ingot along the crystallizer working length of several centimeters is very difficult at such a high casting rate and requires the precise determination of parameters for each alloy, particularly if this is a multicomponent alloy with a wide range of solidification temperatures. To this family of alloys belong multicomponent silumins, with the special case of phosphorus-modified near-eutectic and hypereutectic systems. Below are the results of technological tests as well as structure examinations of ingots cast from silumins with different ranges of solidification temperatures. Ingots of 100-mm diameters were cast in a vertical system. In this arrangement, ingots with a diameter of 70 mm were also cast, using crystallizers normally operating in a horizontal continuous casting line.","PeriodicalId":18751,"journal":{"name":"Metallurgy and Foundry Engineering","volume":"34 1","pages":"175"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CASTING SMALL-DIAMETER INGOTS FROM MULTICOMPONENT SILUMINS\",\"authors\":\"Z. Zamkotowicz, B. Augustyn, P. Kumor, D. Kapinos, J. Żelechowski, M. Bigaj\",\"doi\":\"10.7494/MAFE.2014.40.3.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The casting of ingots from aluminum alloys with a small range of solidification temperatures currently poses no major technical problems. On the other hand, problems do occur when multicomponent alloys containing elements such as Cu, Zn, or Mg are cast. This applies to alloys both wrought and cast. For these alloys, the differences in temperature starting and ending the solidification process reach 160°C. The difficulties are even more pronounced when the diameter of the cast ingot is less than 100 mm. Casting small-diameter ingots requires a very careful selection of parameters, which – for ingots with a diameter of about 70 mm – usually involve very high casting rates of up to 400 mm/min. The formation of a subsurface zone in the ingot along the crystallizer working length of several centimeters is very difficult at such a high casting rate and requires the precise determination of parameters for each alloy, particularly if this is a multicomponent alloy with a wide range of solidification temperatures. To this family of alloys belong multicomponent silumins, with the special case of phosphorus-modified near-eutectic and hypereutectic systems. Below are the results of technological tests as well as structure examinations of ingots cast from silumins with different ranges of solidification temperatures. Ingots of 100-mm diameters were cast in a vertical system. In this arrangement, ingots with a diameter of 70 mm were also cast, using crystallizers normally operating in a horizontal continuous casting line.\",\"PeriodicalId\":18751,\"journal\":{\"name\":\"Metallurgy and Foundry Engineering\",\"volume\":\"34 1\",\"pages\":\"175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgy and Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MAFE.2014.40.3.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgy and Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MAFE.2014.40.3.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CASTING SMALL-DIAMETER INGOTS FROM MULTICOMPONENT SILUMINS
The casting of ingots from aluminum alloys with a small range of solidification temperatures currently poses no major technical problems. On the other hand, problems do occur when multicomponent alloys containing elements such as Cu, Zn, or Mg are cast. This applies to alloys both wrought and cast. For these alloys, the differences in temperature starting and ending the solidification process reach 160°C. The difficulties are even more pronounced when the diameter of the cast ingot is less than 100 mm. Casting small-diameter ingots requires a very careful selection of parameters, which – for ingots with a diameter of about 70 mm – usually involve very high casting rates of up to 400 mm/min. The formation of a subsurface zone in the ingot along the crystallizer working length of several centimeters is very difficult at such a high casting rate and requires the precise determination of parameters for each alloy, particularly if this is a multicomponent alloy with a wide range of solidification temperatures. To this family of alloys belong multicomponent silumins, with the special case of phosphorus-modified near-eutectic and hypereutectic systems. Below are the results of technological tests as well as structure examinations of ingots cast from silumins with different ranges of solidification temperatures. Ingots of 100-mm diameters were cast in a vertical system. In this arrangement, ingots with a diameter of 70 mm were also cast, using crystallizers normally operating in a horizontal continuous casting line.