一个可积的(经典和量子)四波混频哈密顿系统

A. Odzijewicz, E. Wawreniuk
{"title":"一个可积的(经典和量子)四波混频哈密顿系统","authors":"A. Odzijewicz, E. Wawreniuk","doi":"10.1063/5.0006887","DOIUrl":null,"url":null,"abstract":"A four-wave mixing Hamiltonian system on the classical as well as on the quantum level is investigated. In the classical case, if one assumes the frequency resonance condition of the form $\\omega_0 -\\omega_1 +\\omega_2 -\\omega_3=0$, this Hamiltonian system is integrated in quadratures and the explicit formulas of solutions are presented. Under the same condition the spectral decomposition of quantum Hamiltonian is found and thus, the Heisenberg equation for this system is solved. Some applications of the obtained results in non-linear optics are disscused.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An integrable (classical and quantum) four-wave mixing Hamiltonian system\",\"authors\":\"A. Odzijewicz, E. Wawreniuk\",\"doi\":\"10.1063/5.0006887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A four-wave mixing Hamiltonian system on the classical as well as on the quantum level is investigated. In the classical case, if one assumes the frequency resonance condition of the form $\\\\omega_0 -\\\\omega_1 +\\\\omega_2 -\\\\omega_3=0$, this Hamiltonian system is integrated in quadratures and the explicit formulas of solutions are presented. Under the same condition the spectral decomposition of quantum Hamiltonian is found and thus, the Heisenberg equation for this system is solved. Some applications of the obtained results in non-linear optics are disscused.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0006887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0006887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了经典和量子水平上的四波混频哈密顿系统。在经典情况下,假设频率共振条件为$\omega_0 -\omega_1 +\omega_2 -\omega_3=0$,将该哈密顿系统积分为正交,并给出了解的显式公式。在相同的条件下,发现了量子哈密顿量的谱分解,从而求解了该系统的海森堡方程。讨论了所得结果在非线性光学中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrable (classical and quantum) four-wave mixing Hamiltonian system
A four-wave mixing Hamiltonian system on the classical as well as on the quantum level is investigated. In the classical case, if one assumes the frequency resonance condition of the form $\omega_0 -\omega_1 +\omega_2 -\omega_3=0$, this Hamiltonian system is integrated in quadratures and the explicit formulas of solutions are presented. Under the same condition the spectral decomposition of quantum Hamiltonian is found and thus, the Heisenberg equation for this system is solved. Some applications of the obtained results in non-linear optics are disscused.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信