论在线信息的测量偏差

E. Pitoura, Panayiotis Tsaparas, G. Flouris, I. Fundulaki, P. Papadakos, S. Abiteboul, G. Weikum
{"title":"论在线信息的测量偏差","authors":"E. Pitoura, Panayiotis Tsaparas, G. Flouris, I. Fundulaki, P. Papadakos, S. Abiteboul, G. Weikum","doi":"10.1145/3186549.3186553","DOIUrl":null,"url":null,"abstract":"Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"35 1","pages":"16-21"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"On Measuring Bias in Online Information\",\"authors\":\"E. Pitoura, Panayiotis Tsaparas, G. Flouris, I. Fundulaki, P. Papadakos, S. Abiteboul, G. Weikum\",\"doi\":\"10.1145/3186549.3186553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"35 1\",\"pages\":\"16-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3186549.3186553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3186549.3186553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

在线信息中的偏见最近已成为一个紧迫的问题,搜索引擎、社交网络和推荐服务被指责表现出某种形式的偏见。在这篇远景论文中,我们提出了一种测量偏差的系统方法。为此,我们讨论了量化各种类型偏差的正式措施,我们概述了实现它们所需的系统组件,并强调了相关的研究挑战和开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Measuring Bias in Online Information
Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信