{"title":"利用Ruscheweyh-Bernardi微分积分算子得到一元性的充分条件","authors":"G. Oros","doi":"10.24193/subbmath.2023.2.02","DOIUrl":null,"url":null,"abstract":"\"In this paper we introduce the Ruscheweyh-Bernardi differential-integral operator $T^m:A\\to A$ defined by $$T^m[f](z)=(1-\\lambda )R^m [f](z)+\\lambda B^m[f](z),\\ z\\in U,$$ where $R^m$ is the Ruscheweyh differential operator (Definition \\ref{d1.2}) and $B^m$ is the Bernardi integral operator (Definition \\ref{d1.1}). By using the operator $T^m$, the class of univalent functions denoted by $T^m(\\lambda ,\\beta )$, $0\\le \\lambda \\le 1$, $0\\le \\beta <1$, is defined and several differential subordinations are studied.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient conditions for univalence obtained by using the Ruscheweyh-Bernardi differential-integral operator\",\"authors\":\"G. Oros\",\"doi\":\"10.24193/subbmath.2023.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper we introduce the Ruscheweyh-Bernardi differential-integral operator $T^m:A\\\\to A$ defined by $$T^m[f](z)=(1-\\\\lambda )R^m [f](z)+\\\\lambda B^m[f](z),\\\\ z\\\\in U,$$ where $R^m$ is the Ruscheweyh differential operator (Definition \\\\ref{d1.2}) and $B^m$ is the Bernardi integral operator (Definition \\\\ref{d1.1}). By using the operator $T^m$, the class of univalent functions denoted by $T^m(\\\\lambda ,\\\\beta )$, $0\\\\le \\\\lambda \\\\le 1$, $0\\\\le \\\\beta <1$, is defined and several differential subordinations are studied.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sufficient conditions for univalence obtained by using the Ruscheweyh-Bernardi differential-integral operator
"In this paper we introduce the Ruscheweyh-Bernardi differential-integral operator $T^m:A\to A$ defined by $$T^m[f](z)=(1-\lambda )R^m [f](z)+\lambda B^m[f](z),\ z\in U,$$ where $R^m$ is the Ruscheweyh differential operator (Definition \ref{d1.2}) and $B^m$ is the Bernardi integral operator (Definition \ref{d1.1}). By using the operator $T^m$, the class of univalent functions denoted by $T^m(\lambda ,\beta )$, $0\le \lambda \le 1$, $0\le \beta <1$, is defined and several differential subordinations are studied."