基于期望最大化的多径信道合作多用户调制分类

Jingwen Zhang, Fanggang Wang, Z. Zhong, D. Cabric
{"title":"基于期望最大化的多径信道合作多用户调制分类","authors":"Jingwen Zhang, Fanggang Wang, Z. Zhong, D. Cabric","doi":"10.1109/ICC.2017.7996783","DOIUrl":null,"url":null,"abstract":"With the advent of cognitive radio (CR) and dynamic spectrum access techniques, where multiple signals may coexist within the same frequency band, multiuser modulation classification problem becomes a vital issue, which has not been sufficiently investigated. In this paper, we consider a cooperative multiuser modulation classification problem, in the presence of unknown multipath channels. A likelihood-based (LB) classifier using the expectation-maximization (EM) algorithm is proposed, which enables to find the maximum likelihood estimates (MLEs) iteratively. Numerical results show that the proposed algorithm achieves significant improvement on the classification performance with a small number of samples when compared to the conventional methods, which demonstrates its reliability and efficiency of identifying modulations of multiple users under the multipath scenarios.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cooperative multiuser modulation classification in multipath channels via expectation-maximization\",\"authors\":\"Jingwen Zhang, Fanggang Wang, Z. Zhong, D. Cabric\",\"doi\":\"10.1109/ICC.2017.7996783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of cognitive radio (CR) and dynamic spectrum access techniques, where multiple signals may coexist within the same frequency band, multiuser modulation classification problem becomes a vital issue, which has not been sufficiently investigated. In this paper, we consider a cooperative multiuser modulation classification problem, in the presence of unknown multipath channels. A likelihood-based (LB) classifier using the expectation-maximization (EM) algorithm is proposed, which enables to find the maximum likelihood estimates (MLEs) iteratively. Numerical results show that the proposed algorithm achieves significant improvement on the classification performance with a small number of samples when compared to the conventional methods, which demonstrates its reliability and efficiency of identifying modulations of multiple users under the multipath scenarios.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"23 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7996783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着认知无线电(CR)和动态频谱接入技术的出现,多个信号可能在同一频段内共存,多用户调制分类问题成为一个重要问题,但目前对该问题的研究还不够充分。本文研究了存在未知多径信道的协作多用户调制分类问题。提出了一种基于期望最大化算法的基于似然的分类器,该分类器能够迭代地找到最大似然估计。数值结果表明,与传统方法相比,该算法在少量样本下的分类性能有了显著提高,证明了该算法在多径场景下识别多用户调制的可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative multiuser modulation classification in multipath channels via expectation-maximization
With the advent of cognitive radio (CR) and dynamic spectrum access techniques, where multiple signals may coexist within the same frequency band, multiuser modulation classification problem becomes a vital issue, which has not been sufficiently investigated. In this paper, we consider a cooperative multiuser modulation classification problem, in the presence of unknown multipath channels. A likelihood-based (LB) classifier using the expectation-maximization (EM) algorithm is proposed, which enables to find the maximum likelihood estimates (MLEs) iteratively. Numerical results show that the proposed algorithm achieves significant improvement on the classification performance with a small number of samples when compared to the conventional methods, which demonstrates its reliability and efficiency of identifying modulations of multiple users under the multipath scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信