{"title":"沉积zns1 - xfex薄膜的性能","authors":"Jafarli Rufat","doi":"10.47363/jnsrr/2021(3)127","DOIUrl":null,"url":null,"abstract":"Semiconducting ZnS1-xFex thin films were prepared with different substrate temperature on glass substrates from aqueous solution technique. ZnS1-xFex films were prepared, using a aqueous solution containing ethyleneglycol, zinc chloride and sulphur. XRD study shows that the aqueous deposited ZnS1-xFex thin films are polycrystalline hexagonal structure. The effect of Fe concentration on the optical parameters such as absorption coefficient, refractive index, dielectric function, optical conductivity, and reflectivity is also investigated. Results revealed that Cd1-xFexS is a suitable compound for spintronics and optoelectronics devices. A good optical transparency of about 75% in the visible region is observed for all prepared ZnS1-xFex thin films. The direct optical band gap of the deposited ZnS1-xFex thin films with different substrate temperature (380°C – 530°C) were lying in the range 3.27–3.35 eV.","PeriodicalId":16545,"journal":{"name":"Journal of Nanosciences Research & Reports","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of ZnS1-xFe x thin Films Deposited\",\"authors\":\"Jafarli Rufat\",\"doi\":\"10.47363/jnsrr/2021(3)127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconducting ZnS1-xFex thin films were prepared with different substrate temperature on glass substrates from aqueous solution technique. ZnS1-xFex films were prepared, using a aqueous solution containing ethyleneglycol, zinc chloride and sulphur. XRD study shows that the aqueous deposited ZnS1-xFex thin films are polycrystalline hexagonal structure. The effect of Fe concentration on the optical parameters such as absorption coefficient, refractive index, dielectric function, optical conductivity, and reflectivity is also investigated. Results revealed that Cd1-xFexS is a suitable compound for spintronics and optoelectronics devices. A good optical transparency of about 75% in the visible region is observed for all prepared ZnS1-xFex thin films. The direct optical band gap of the deposited ZnS1-xFex thin films with different substrate temperature (380°C – 530°C) were lying in the range 3.27–3.35 eV.\",\"PeriodicalId\":16545,\"journal\":{\"name\":\"Journal of Nanosciences Research & Reports\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanosciences Research & Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47363/jnsrr/2021(3)127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanosciences Research & Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jnsrr/2021(3)127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiconducting ZnS1-xFex thin films were prepared with different substrate temperature on glass substrates from aqueous solution technique. ZnS1-xFex films were prepared, using a aqueous solution containing ethyleneglycol, zinc chloride and sulphur. XRD study shows that the aqueous deposited ZnS1-xFex thin films are polycrystalline hexagonal structure. The effect of Fe concentration on the optical parameters such as absorption coefficient, refractive index, dielectric function, optical conductivity, and reflectivity is also investigated. Results revealed that Cd1-xFexS is a suitable compound for spintronics and optoelectronics devices. A good optical transparency of about 75% in the visible region is observed for all prepared ZnS1-xFex thin films. The direct optical band gap of the deposited ZnS1-xFex thin films with different substrate temperature (380°C – 530°C) were lying in the range 3.27–3.35 eV.