{"title":"移动服务推荐系统融合了隐式和显式用户信任关系","authors":"Pengcheng Luo, Jilin Zhang, Jian Wan, Nailiang Zhao, Zujie Ren, Li Zhou, Jing Shen","doi":"10.3233/AIS-200585","DOIUrl":null,"url":null,"abstract":"In recent years, with the development of advanced mobile applications, people’s various daily behavior data, such as geographic location, social information, hobbies, are more easily collected. To process these data, data cross-boundary fusion has become a key technology, and there are some challenges, such as solving the problems of the cross-boundary business integrity, cross-boundary value complementarity and so on. Mobile Services Recommendation requires improved recommendation accuracy. User trust is an effective measure of information similarity between users. Using trust can effectively improve the accuracy of recommendations. The existing methods have low utilization of general trust data, sparseness of trust data, and lack of user trust characteristics. Therefore, a method needs to be proposed to make up for the shortcomings of explicit trust relationships and improve the accuracy of user interest feature completion. In this paper, a recommendation model is proposed to mine the implicit trust relationships from user data and integrate the explicit social information of users. First, the rating prediction model was improved using the traditional Singular Value Decomposition (SVD) model, and the implicit trust relationships were mined from the user’s historical data. Then, they were fused with the explicit social trust relationships to obtain a crossover data fusion model. We tested the model using three different orders of magnitude. We compared the user preference prediction accuracies of two models: one that does not integrate social information and one that integrates social information. The results show that our model improves the user preference prediction accuracy and has higher accuracy for cold start users. On the three data sets, the average error is reduced by 2.29%, 5.44% and 4.42%, suggesting that it is an effective data crossover fusion technology.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"31 1","pages":"21-35"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mobile services recommendation system fuses implicit and explicit user trust relationships\",\"authors\":\"Pengcheng Luo, Jilin Zhang, Jian Wan, Nailiang Zhao, Zujie Ren, Li Zhou, Jing Shen\",\"doi\":\"10.3233/AIS-200585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the development of advanced mobile applications, people’s various daily behavior data, such as geographic location, social information, hobbies, are more easily collected. To process these data, data cross-boundary fusion has become a key technology, and there are some challenges, such as solving the problems of the cross-boundary business integrity, cross-boundary value complementarity and so on. Mobile Services Recommendation requires improved recommendation accuracy. User trust is an effective measure of information similarity between users. Using trust can effectively improve the accuracy of recommendations. The existing methods have low utilization of general trust data, sparseness of trust data, and lack of user trust characteristics. Therefore, a method needs to be proposed to make up for the shortcomings of explicit trust relationships and improve the accuracy of user interest feature completion. In this paper, a recommendation model is proposed to mine the implicit trust relationships from user data and integrate the explicit social information of users. First, the rating prediction model was improved using the traditional Singular Value Decomposition (SVD) model, and the implicit trust relationships were mined from the user’s historical data. Then, they were fused with the explicit social trust relationships to obtain a crossover data fusion model. We tested the model using three different orders of magnitude. We compared the user preference prediction accuracies of two models: one that does not integrate social information and one that integrates social information. The results show that our model improves the user preference prediction accuracy and has higher accuracy for cold start users. On the three data sets, the average error is reduced by 2.29%, 5.44% and 4.42%, suggesting that it is an effective data crossover fusion technology.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"31 1\",\"pages\":\"21-35\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/AIS-200585\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-200585","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A mobile services recommendation system fuses implicit and explicit user trust relationships
In recent years, with the development of advanced mobile applications, people’s various daily behavior data, such as geographic location, social information, hobbies, are more easily collected. To process these data, data cross-boundary fusion has become a key technology, and there are some challenges, such as solving the problems of the cross-boundary business integrity, cross-boundary value complementarity and so on. Mobile Services Recommendation requires improved recommendation accuracy. User trust is an effective measure of information similarity between users. Using trust can effectively improve the accuracy of recommendations. The existing methods have low utilization of general trust data, sparseness of trust data, and lack of user trust characteristics. Therefore, a method needs to be proposed to make up for the shortcomings of explicit trust relationships and improve the accuracy of user interest feature completion. In this paper, a recommendation model is proposed to mine the implicit trust relationships from user data and integrate the explicit social information of users. First, the rating prediction model was improved using the traditional Singular Value Decomposition (SVD) model, and the implicit trust relationships were mined from the user’s historical data. Then, they were fused with the explicit social trust relationships to obtain a crossover data fusion model. We tested the model using three different orders of magnitude. We compared the user preference prediction accuracies of two models: one that does not integrate social information and one that integrates social information. The results show that our model improves the user preference prediction accuracy and has higher accuracy for cold start users. On the three data sets, the average error is reduced by 2.29%, 5.44% and 4.42%, suggesting that it is an effective data crossover fusion technology.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.