赋范空间上连续函数的逼近问题

M. A. Mytrofanov, A. Ravsky
{"title":"赋范空间上连续函数的逼近问题","authors":"M. A. Mytrofanov, A. Ravsky","doi":"10.15330/cmp.12.1.107-110","DOIUrl":null,"url":null,"abstract":"Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions which are analytic on open subsets of $X$. Also we prove that each continuous function to a complex Banach space from a complex separable normed space admitting a separating $*$-polynomial can be uniformly approximated by $*$-analytic functions.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on approximation of continuous functions on normed spaces\",\"authors\":\"M. A. Mytrofanov, A. Ravsky\",\"doi\":\"10.15330/cmp.12.1.107-110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions which are analytic on open subsets of $X$. Also we prove that each continuous function to a complex Banach space from a complex separable normed space admitting a separating $*$-polynomial can be uniformly approximated by $*$-analytic functions.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.12.1.107-110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.12.1.107-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设X$是一个实可分离赋范空间X$,允许一个分离多项式。证明了从$X$的子集$ a $到实巴拿赫空间的每一个连续函数都可以由$X$的开子集上解析函数的$ a $的限制一致逼近。同时证明了从具有分离的$*$-多项式的复可分赋范空间到复巴拿赫空间的每一个连续函数都可以用$*$-解析函数一致逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on approximation of continuous functions on normed spaces
Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions which are analytic on open subsets of $X$. Also we prove that each continuous function to a complex Banach space from a complex separable normed space admitting a separating $*$-polynomial can be uniformly approximated by $*$-analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信