John E. Vargas-Muñoz, D. Tuia, J. A. D. Santos, A. Falcão
{"title":"基于半监督标签传播的亚分米分辨率图像分类后平滑","authors":"John E. Vargas-Muñoz, D. Tuia, J. A. D. Santos, A. Falcão","doi":"10.1109/IGARSS.2017.8127799","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a post classification smoothing method aimed at improving the accuracy and visual appearance of sub-decimeter image classification results. Starting from the class confidence maps of a supervised classifier, we find a set of high confidence markers and propagate labels on an extended region adjacency graph. We apply the proposed method on a challenging 5cm resolution dataset over Potsdam, Germany. The proposed algorithm outperforms state-of-the-art post classification smoothing algorithms both when the classifier is trained specifically on the image and when it is trained and tested in different set of images.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"55 1","pages":"3688-3691"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post classification smoothing in sub-decimeter resolution images with semi-supervised label propagation\",\"authors\":\"John E. Vargas-Muñoz, D. Tuia, J. A. D. Santos, A. Falcão\",\"doi\":\"10.1109/IGARSS.2017.8127799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a post classification smoothing method aimed at improving the accuracy and visual appearance of sub-decimeter image classification results. Starting from the class confidence maps of a supervised classifier, we find a set of high confidence markers and propagate labels on an extended region adjacency graph. We apply the proposed method on a challenging 5cm resolution dataset over Potsdam, Germany. The proposed algorithm outperforms state-of-the-art post classification smoothing algorithms both when the classifier is trained specifically on the image and when it is trained and tested in different set of images.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"55 1\",\"pages\":\"3688-3691\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Post classification smoothing in sub-decimeter resolution images with semi-supervised label propagation
In this paper, we propose a post classification smoothing method aimed at improving the accuracy and visual appearance of sub-decimeter image classification results. Starting from the class confidence maps of a supervised classifier, we find a set of high confidence markers and propagate labels on an extended region adjacency graph. We apply the proposed method on a challenging 5cm resolution dataset over Potsdam, Germany. The proposed algorithm outperforms state-of-the-art post classification smoothing algorithms both when the classifier is trained specifically on the image and when it is trained and tested in different set of images.