压缩传感与一个小刀和一个引导

Aaron Defazio, M. Tygert, Rachel A. Ward, Jure Zbontar
{"title":"压缩传感与一个小刀和一个引导","authors":"Aaron Defazio, M. Tygert, Rachel A. Ward, Jure Zbontar","doi":"10.52933/jdssv.v2i4.43","DOIUrl":null,"url":null,"abstract":"Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured (based on a potentially unjustified regularizer or prior distribution). Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medical imaging seeks to discover. Estimating errors using the standard statistical tools of a jackknife and a bootstrap yields \"error bars\" in the form of full images that are remarkably qualitatively representative of the actual errors (at least when evaluated and validated on data sets for which the ground truth and hence the actual error is available). These images show the structure of possible errors -- without recourse to measuring the entire ground truth directly -- and build confidence in regions of the images where the estimated errors are small. Further visualizations and summary statistics can aid in the interpretation of such error estimates. Visualizations include suitable colorizations of the reconstruction, as well as the obvious \"correction\" of the reconstruction by subtracting off the error estimates. The canonical summary statistic would be the root-mean-square of the error estimates. Unfortunately, colorizations appear likely to be too distracting for actual clinical practice in medical imaging, and the root-mean-square gets swamped by background noise in the error estimates. Fortunately, straightforward displays of the error estimates and of the \"corrected\" reconstruction are illuminating, and the root-mean-square improves greatly after mild blurring of the error estimates; the blurring is barely perceptible to the human eye yet smooths away background noise that would otherwise overwhelm the root-mean-square.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compressed sensing with a jackknife and a bootstrap\",\"authors\":\"Aaron Defazio, M. Tygert, Rachel A. Ward, Jure Zbontar\",\"doi\":\"10.52933/jdssv.v2i4.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured (based on a potentially unjustified regularizer or prior distribution). Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medical imaging seeks to discover. Estimating errors using the standard statistical tools of a jackknife and a bootstrap yields \\\"error bars\\\" in the form of full images that are remarkably qualitatively representative of the actual errors (at least when evaluated and validated on data sets for which the ground truth and hence the actual error is available). These images show the structure of possible errors -- without recourse to measuring the entire ground truth directly -- and build confidence in regions of the images where the estimated errors are small. Further visualizations and summary statistics can aid in the interpretation of such error estimates. Visualizations include suitable colorizations of the reconstruction, as well as the obvious \\\"correction\\\" of the reconstruction by subtracting off the error estimates. The canonical summary statistic would be the root-mean-square of the error estimates. Unfortunately, colorizations appear likely to be too distracting for actual clinical practice in medical imaging, and the root-mean-square gets swamped by background noise in the error estimates. Fortunately, straightforward displays of the error estimates and of the \\\"corrected\\\" reconstruction are illuminating, and the root-mean-square improves greatly after mild blurring of the error estimates; the blurring is barely perceptible to the human eye yet smooths away background noise that would otherwise overwhelm the root-mean-square.\",\"PeriodicalId\":93459,\"journal\":{\"name\":\"Journal of data science, statistics, and visualisation\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science, statistics, and visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52933/jdssv.v2i4.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v2i4.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

压缩感知提出在一个信号中重建比实际测量值的数量更多的自由度(基于一个可能不合理的正则器或先验分布)。因此,压缩感知存在引入错误的风险——插入虚假伪影或掩盖医学成像试图发现的异常。使用jackknife和bootstrap等标准统计工具估算误差会产生完整图像形式的“误差条”,这些图像在质量上显著地代表了实际误差(至少在对具有基本事实和实际误差的数据集进行评估和验证时是这样)。这些图像显示了可能误差的结构——无需直接测量整个地面真值——并在估计误差较小的图像区域建立信心。进一步的可视化和汇总统计可以帮助解释这种误差估计。可视化包括重建的适当着色,以及通过减去误差估计对重建进行明显的“校正”。典型的汇总统计量将是误差估计的均方根。不幸的是,在医学成像的实际临床实践中,着色似乎过于分散注意力,均方根在误差估计中被背景噪声淹没。幸运的是,误差估计和“修正”重建的直观显示是有启发的,在轻微模糊误差估计后,均方根大大提高;人眼几乎察觉不到这种模糊,但它消除了背景噪音,否则这些噪音会压倒均方根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed sensing with a jackknife and a bootstrap
Compressed sensing proposes to reconstruct more degrees of freedom in a signal than the number of values actually measured (based on a potentially unjustified regularizer or prior distribution). Compressed sensing therefore risks introducing errors -- inserting spurious artifacts or masking the abnormalities that medical imaging seeks to discover. Estimating errors using the standard statistical tools of a jackknife and a bootstrap yields "error bars" in the form of full images that are remarkably qualitatively representative of the actual errors (at least when evaluated and validated on data sets for which the ground truth and hence the actual error is available). These images show the structure of possible errors -- without recourse to measuring the entire ground truth directly -- and build confidence in regions of the images where the estimated errors are small. Further visualizations and summary statistics can aid in the interpretation of such error estimates. Visualizations include suitable colorizations of the reconstruction, as well as the obvious "correction" of the reconstruction by subtracting off the error estimates. The canonical summary statistic would be the root-mean-square of the error estimates. Unfortunately, colorizations appear likely to be too distracting for actual clinical practice in medical imaging, and the root-mean-square gets swamped by background noise in the error estimates. Fortunately, straightforward displays of the error estimates and of the "corrected" reconstruction are illuminating, and the root-mean-square improves greatly after mild blurring of the error estimates; the blurring is barely perceptible to the human eye yet smooths away background noise that would otherwise overwhelm the root-mean-square.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信