{"title":"Chern-Schwartz-MacPherson等变类","authors":"Amanda Monteiro, Nivaldo De Góes Grulha Júnior","doi":"10.12957/cadmat.2021.63013","DOIUrl":null,"url":null,"abstract":"Para uma variedade algébrica complexa singular existem várias definições de classes características possíveis. A classe de Chern-Schwartz-MacPherson é uma delas. R. MacPherson construiu a classe provando a existência de uma única transformação natural do grupo abeliano das funções construtíveis sobre X para o grupo de homologia tal que, se X é não-singular, então C∗(1X) coincide com a classe de Chern usual. Independentemente, M.-H. Schwartz introduziu classes de obstrução para a extensão de campos vetoriais radiais sobre X, e foi mostrado que essas definições são equivalentes, a partir de então esta classe tem sido chamada de classe de Chern-Schwartz-MacPherson.Neste estudo, apresentamos uma G-versão da classe de Chern-Schwartz-MacPherson para as G-variedades algébricas.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classe Equivariante de Chern-Schwartz-MacPherson\",\"authors\":\"Amanda Monteiro, Nivaldo De Góes Grulha Júnior\",\"doi\":\"10.12957/cadmat.2021.63013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Para uma variedade algébrica complexa singular existem várias definições de classes características possíveis. A classe de Chern-Schwartz-MacPherson é uma delas. R. MacPherson construiu a classe provando a existência de uma única transformação natural do grupo abeliano das funções construtíveis sobre X para o grupo de homologia tal que, se X é não-singular, então C∗(1X) coincide com a classe de Chern usual. Independentemente, M.-H. Schwartz introduziu classes de obstrução para a extensão de campos vetoriais radiais sobre X, e foi mostrado que essas definições são equivalentes, a partir de então esta classe tem sido chamada de classe de Chern-Schwartz-MacPherson.Neste estudo, apresentamos uma G-versão da classe de Chern-Schwartz-MacPherson para as G-variedades algébricas.\",\"PeriodicalId\":30267,\"journal\":{\"name\":\"Cadernos do IME Serie Estatistica\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cadernos do IME Serie Estatistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12957/cadmat.2021.63013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/cadmat.2021.63013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Para uma variedade algébrica complexa singular existem várias definições de classes características possíveis. A classe de Chern-Schwartz-MacPherson é uma delas. R. MacPherson construiu a classe provando a existência de uma única transformação natural do grupo abeliano das funções construtíveis sobre X para o grupo de homologia tal que, se X é não-singular, então C∗(1X) coincide com a classe de Chern usual. Independentemente, M.-H. Schwartz introduziu classes de obstrução para a extensão de campos vetoriais radiais sobre X, e foi mostrado que essas definições são equivalentes, a partir de então esta classe tem sido chamada de classe de Chern-Schwartz-MacPherson.Neste estudo, apresentamos uma G-versão da classe de Chern-Schwartz-MacPherson para as G-variedades algébricas.