多目标web服务组合的轻量级方法

J. Liao, Yang Liu, Jing Wang, Jingyu Wang, Q. Qi
{"title":"多目标web服务组合的轻量级方法","authors":"J. Liao, Yang Liu, Jing Wang, Jingyu Wang, Q. Qi","doi":"10.1049/iet-sen.2014.0155","DOIUrl":null,"url":null,"abstract":"Service composition is an efficient way to implement a service of complex business process in heterogeneous environment. Existing service selection methods mainly utilise fitness function or constraint technique to convert multiple objectives service composition problems to single objective ones. These methods need to take effect with priori knowledge of problem's solution space. Besides, in each execution only one solution can be obtained, hence, users can hardly acquire evenly distributed solutions with acceptable computation cost. The authors also propose a lightweight particle swarm optimisation service selection algorithm for multi-objective service composition problems. Simulation results illustrate that the proposed algorithm surpasses the comparative algorithm in approximation, coverage and execution time.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"67 1","pages":"116-124"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lightweight approach for multi-objective web service composition\",\"authors\":\"J. Liao, Yang Liu, Jing Wang, Jingyu Wang, Q. Qi\",\"doi\":\"10.1049/iet-sen.2014.0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service composition is an efficient way to implement a service of complex business process in heterogeneous environment. Existing service selection methods mainly utilise fitness function or constraint technique to convert multiple objectives service composition problems to single objective ones. These methods need to take effect with priori knowledge of problem's solution space. Besides, in each execution only one solution can be obtained, hence, users can hardly acquire evenly distributed solutions with acceptable computation cost. The authors also propose a lightweight particle swarm optimisation service selection algorithm for multi-objective service composition problems. Simulation results illustrate that the proposed algorithm surpasses the comparative algorithm in approximation, coverage and execution time.\",\"PeriodicalId\":13395,\"journal\":{\"name\":\"IET Softw.\",\"volume\":\"67 1\",\"pages\":\"116-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Softw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-sen.2014.0155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-sen.2014.0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

服务组合是在异构环境中实现复杂业务流程服务的一种有效方法。现有的服务选择方法主要是利用适应度函数或约束技术将多目标服务组合问题转化为单目标服务组合问题。这些方法需要在问题解空间的先验知识的基础上发挥作用。此外,每次执行只能得到一个解,用户很难获得计算成本可接受的均匀分布解。针对多目标服务组合问题,提出了一种轻量级粒子群优化服务选择算法。仿真结果表明,该算法在逼近性、覆盖范围和执行时间上都优于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight approach for multi-objective web service composition
Service composition is an efficient way to implement a service of complex business process in heterogeneous environment. Existing service selection methods mainly utilise fitness function or constraint technique to convert multiple objectives service composition problems to single objective ones. These methods need to take effect with priori knowledge of problem's solution space. Besides, in each execution only one solution can be obtained, hence, users can hardly acquire evenly distributed solutions with acceptable computation cost. The authors also propose a lightweight particle swarm optimisation service selection algorithm for multi-objective service composition problems. Simulation results illustrate that the proposed algorithm surpasses the comparative algorithm in approximation, coverage and execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信