不同方法测定超导铜酸Y3Ba5Cu8OX颗粒尺寸

A. Bolotnikova
{"title":"不同方法测定超导铜酸Y3Ba5Cu8OX颗粒尺寸","authors":"A. Bolotnikova","doi":"10.21303/2585-6847.2020.001504","DOIUrl":null,"url":null,"abstract":"The superconducting cuprate Y3Ba5Cu8Ox was obtained with the help of sol-gel technology (sample C), co-precipitation of hydroxocarbonates (sample B) and solid-phase synthesis methods (A). Based on the results of scanning electron microscopy and methods based on the analysis of X-ray diffraction data: the Williamson-Hall construction and the Scherrer formula, features of the microstructure of the synthesized samples are established. The smallest particle size has a sample that has been synthesized by the sol-gel method. The tendency to aggregation and sedimentation for this sample is the smallest. The sample obtained by the co-precipitation method has larger grains and a higher tendency to aggregate. The size of the microparticles and the tendency to aggregate for the sample synthesized by the solid-phase method are greatest. The morphology of particles was studied using three methods: SEM, Scherrer and Williamson-Hall formulas and the following results were found: particle size depends on the synthesis method, but a relatively narrow size distribution within one synthesis method remains, the value of crystal lattice microdeformation for samples increases in a line: C sample– A sample– B sample. Thus, the work was carried out for determining the size, structure and morphology of superconducting phases. It expands knowledge in the field of research of superconducting compounds","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Sizes of Particles of Superconducting Cuprate Y3Ba5Cu8OX by Means of Different Methods\",\"authors\":\"A. Bolotnikova\",\"doi\":\"10.21303/2585-6847.2020.001504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The superconducting cuprate Y3Ba5Cu8Ox was obtained with the help of sol-gel technology (sample C), co-precipitation of hydroxocarbonates (sample B) and solid-phase synthesis methods (A). Based on the results of scanning electron microscopy and methods based on the analysis of X-ray diffraction data: the Williamson-Hall construction and the Scherrer formula, features of the microstructure of the synthesized samples are established. The smallest particle size has a sample that has been synthesized by the sol-gel method. The tendency to aggregation and sedimentation for this sample is the smallest. The sample obtained by the co-precipitation method has larger grains and a higher tendency to aggregate. The size of the microparticles and the tendency to aggregate for the sample synthesized by the solid-phase method are greatest. The morphology of particles was studied using three methods: SEM, Scherrer and Williamson-Hall formulas and the following results were found: particle size depends on the synthesis method, but a relatively narrow size distribution within one synthesis method remains, the value of crystal lattice microdeformation for samples increases in a line: C sample– A sample– B sample. Thus, the work was carried out for determining the size, structure and morphology of superconducting phases. It expands knowledge in the field of research of superconducting compounds\",\"PeriodicalId\":18300,\"journal\":{\"name\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21303/2585-6847.2020.001504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2585-6847.2020.001504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶技术(样品C)、羟基碳酸盐共沉淀法(样品B)和固相合成法(A)制备了超导铜酸盐Y3Ba5Cu8Ox。根据扫描电镜结果和基于x射线衍射数据分析的方法:Williamson-Hall结构和Scherrer公式,建立了合成样品的微观结构特征。最小粒径的样品是用溶胶-凝胶法合成的。这种样品的聚集和沉积倾向最小。共沉淀法得到的样品晶粒较大,团聚倾向较高。固相法合成的样品的微粒尺寸和聚集倾向最大。采用SEM、Scherrer和Williamson-Hall公式三种方法对颗粒形貌进行了研究,结果发现:颗粒尺寸取决于合成方法,但在一种合成方法内仍然存在相对狭窄的尺寸分布,样品的晶格微变形值呈直线增加:C样品- a样品- B样品。因此,这项工作是为了确定超导相的大小、结构和形态。它扩展了超导化合物研究领域的知识
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the Sizes of Particles of Superconducting Cuprate Y3Ba5Cu8OX by Means of Different Methods
The superconducting cuprate Y3Ba5Cu8Ox was obtained with the help of sol-gel technology (sample C), co-precipitation of hydroxocarbonates (sample B) and solid-phase synthesis methods (A). Based on the results of scanning electron microscopy and methods based on the analysis of X-ray diffraction data: the Williamson-Hall construction and the Scherrer formula, features of the microstructure of the synthesized samples are established. The smallest particle size has a sample that has been synthesized by the sol-gel method. The tendency to aggregation and sedimentation for this sample is the smallest. The sample obtained by the co-precipitation method has larger grains and a higher tendency to aggregate. The size of the microparticles and the tendency to aggregate for the sample synthesized by the solid-phase method are greatest. The morphology of particles was studied using three methods: SEM, Scherrer and Williamson-Hall formulas and the following results were found: particle size depends on the synthesis method, but a relatively narrow size distribution within one synthesis method remains, the value of crystal lattice microdeformation for samples increases in a line: C sample– A sample– B sample. Thus, the work was carried out for determining the size, structure and morphology of superconducting phases. It expands knowledge in the field of research of superconducting compounds
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信