Xin Hong, Xiang-Yu Zhou, Sanjiang Li, Yuan Feng, M. Ying
{"title":"基于张量网络的量子电路表示决策图","authors":"Xin Hong, Xiang-Yu Zhou, Sanjiang Li, Yuan Feng, M. Ying","doi":"10.1145/3514355","DOIUrl":null,"url":null,"abstract":"Tensor networks have been successfully applied in simulation of quantum physical systems for decades. Recently, they have also been employed in classical simulation of quantum computing, in particular, random quantum circuits. This article proposes a decision diagram style data structure, called Tensor Decision Diagram (TDD), for more principled and convenient applications of tensor networks. This new data structure provides a compact and canonical representation for quantum circuits. By exploiting circuit partition, the TDD of a quantum circuit can be computed efficiently. Furthermore, we show that the operations of tensor networks essential in their applications (e.g., addition and contraction) can also be implemented efficiently in TDDs. A proof-of-concept implementation of TDDs is presented and its efficiency is evaluated on a set of benchmark quantum circuits. It is expected that TDDs will play an important role in various design automation tasks related to quantum circuits, including but not limited to equivalence checking, error detection, synthesis, simulation, and verification.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"45 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Tensor Network based Decision Diagram for Representation of Quantum Circuits\",\"authors\":\"Xin Hong, Xiang-Yu Zhou, Sanjiang Li, Yuan Feng, M. Ying\",\"doi\":\"10.1145/3514355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor networks have been successfully applied in simulation of quantum physical systems for decades. Recently, they have also been employed in classical simulation of quantum computing, in particular, random quantum circuits. This article proposes a decision diagram style data structure, called Tensor Decision Diagram (TDD), for more principled and convenient applications of tensor networks. This new data structure provides a compact and canonical representation for quantum circuits. By exploiting circuit partition, the TDD of a quantum circuit can be computed efficiently. Furthermore, we show that the operations of tensor networks essential in their applications (e.g., addition and contraction) can also be implemented efficiently in TDDs. A proof-of-concept implementation of TDDs is presented and its efficiency is evaluated on a set of benchmark quantum circuits. It is expected that TDDs will play an important role in various design automation tasks related to quantum circuits, including but not limited to equivalence checking, error detection, synthesis, simulation, and verification.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"45 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3514355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3514355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tensor Network based Decision Diagram for Representation of Quantum Circuits
Tensor networks have been successfully applied in simulation of quantum physical systems for decades. Recently, they have also been employed in classical simulation of quantum computing, in particular, random quantum circuits. This article proposes a decision diagram style data structure, called Tensor Decision Diagram (TDD), for more principled and convenient applications of tensor networks. This new data structure provides a compact and canonical representation for quantum circuits. By exploiting circuit partition, the TDD of a quantum circuit can be computed efficiently. Furthermore, we show that the operations of tensor networks essential in their applications (e.g., addition and contraction) can also be implemented efficiently in TDDs. A proof-of-concept implementation of TDDs is presented and its efficiency is evaluated on a set of benchmark quantum circuits. It is expected that TDDs will play an important role in various design automation tasks related to quantum circuits, including but not limited to equivalence checking, error detection, synthesis, simulation, and verification.