深度学习应用于轴组件存在的视觉检测

Lucas Ferreira Luchi, Andre Gustavo Adami
{"title":"深度学习应用于轴组件存在的视觉检测","authors":"Lucas Ferreira Luchi, Andre Gustavo Adami","doi":"10.18226/23185279.v8iss2p135","DOIUrl":null,"url":null,"abstract":"identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.","PeriodicalId":21696,"journal":{"name":"Scientia cum Industria","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning aplicado a inspeção visual da presença de um componente de conjunto de eixo\",\"authors\":\"Lucas Ferreira Luchi, Andre Gustavo Adami\",\"doi\":\"10.18226/23185279.v8iss2p135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.\",\"PeriodicalId\":21696,\"journal\":{\"name\":\"Scientia cum Industria\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia cum Industria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18226/23185279.v8iss2p135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia cum Industria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18226/23185279.v8iss2p135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

识别或缺乏保留安装的车轴从图像。利用卷积神经网络学习图像特征并进行分类。该系统使用从真实环境中收集的图像进行评估,尽管数据集不平衡,但该方法产生了最大的灵敏度、特异性和F1评分结果。此外,网络架构抽象了工业4.0中基于智能工厂概念的工业过程的演变,以及执行较少依赖人类的决策任务的需要,应该增加对机器学习的工业应用的需求。在这方面,本工作建议使用深度学习来识别车辆轴端是否存在保留环。= =地理= =根据美国人口普查,这个县的面积为。利用在真实工业环境中收集的图像数据集对该系统进行了评估。尽管数据集不平衡,该方法在灵敏度、特异性和F1评分方面取得了最大的结果。因此,神经网络架构得到了优化(减少了90%的参数数量),以提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning aplicado a inspeção visual da presença de um componente de conjunto de eixo
identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信