阿布扎比地区混湿碳酸盐岩储层孔隙几何形状对相对渗透率的影响

M. Dernaika, S. Masalmeh
{"title":"阿布扎比地区混湿碳酸盐岩储层孔隙几何形状对相对渗透率的影响","authors":"M. Dernaika, S. Masalmeh","doi":"10.2118/197427-ms","DOIUrl":null,"url":null,"abstract":"\n Carbonate rocks are complex in their structures and pore geometries and often exhibit a challenge in their classification and behavior. Many rock properties remain unexplained and uncertain because of improper characterization and lack of data QC. The main objective of this paper is to study flow behavior of relative permeability with different rock types in complex carbonate reservoirs.\n Representative core samples were selected from two major hydrocarbon reservoirs in Abu Dhabi. Rock types were identified based on textural facies, PoroPerm characteristics and capillary pressure. Porosity ranged from 15% to 25%, while permeability varied from 1 mD to 50 mD. Primary drainage and imbibition water-oil relative permeability (Kr) curves were measured by the steady-state technique using live fluids at full reservoir conditions with in-situ saturation monitoring. High-rate bump floods were designed at the end of the flooding cycles to counter capillary end effects. Aging period of 4 weeks was incorporated at the end of the drainage cycle. Robust data QC was performed on the samples, and final validation of the relative permeability was conducted by numerical simulation of the raw data and measured capillary pressure.\n The followed QC procedure was crucial to eliminate artefact in the relative permeability curves for proper data evaluation. The different rock types showed consistent variations in the relative permeability hysteresis and end points. Imbibition relative permeability curves showed large variations within the different rock types, where Corey exponent to oil ‘no’ increased with permeability from 3 to 5, whereas the Corey exponent to water ‘nw’ decreased with permeability and ranged from 3 to 1.5. The variations in the relative permeability curves are argued to be the result of different rock structures and pore geometries. Variations were also seen in the end-point data and showed consistent behavior with the rock types.\n The different carbonate rock types were identified based on geological and petrophysical properties. Higher permeability samples were grain-dominated and more heterogeneous in comparison to the lower permeability samples, which were mud-dominated rock types. Imbibition Kr curves showed larger variations than the primary drainage data, which cannot be interpreted based on wettability considerations only. The relative permeability curves have been thoroughly evaluated and QC'd based on raw data of pressure and saturation by use of numerical simulation. Such RRT-based Kr data are not abundant in the literature, and hence should serve as an important piece of information in mixed-wet carbonate reservoirs.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Effect of Pore Geometry on Relative Permeability in Mixed-Wet Carbonate Reservoirs in Abu Dhabi\",\"authors\":\"M. Dernaika, S. Masalmeh\",\"doi\":\"10.2118/197427-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Carbonate rocks are complex in their structures and pore geometries and often exhibit a challenge in their classification and behavior. Many rock properties remain unexplained and uncertain because of improper characterization and lack of data QC. The main objective of this paper is to study flow behavior of relative permeability with different rock types in complex carbonate reservoirs.\\n Representative core samples were selected from two major hydrocarbon reservoirs in Abu Dhabi. Rock types were identified based on textural facies, PoroPerm characteristics and capillary pressure. Porosity ranged from 15% to 25%, while permeability varied from 1 mD to 50 mD. Primary drainage and imbibition water-oil relative permeability (Kr) curves were measured by the steady-state technique using live fluids at full reservoir conditions with in-situ saturation monitoring. High-rate bump floods were designed at the end of the flooding cycles to counter capillary end effects. Aging period of 4 weeks was incorporated at the end of the drainage cycle. Robust data QC was performed on the samples, and final validation of the relative permeability was conducted by numerical simulation of the raw data and measured capillary pressure.\\n The followed QC procedure was crucial to eliminate artefact in the relative permeability curves for proper data evaluation. The different rock types showed consistent variations in the relative permeability hysteresis and end points. Imbibition relative permeability curves showed large variations within the different rock types, where Corey exponent to oil ‘no’ increased with permeability from 3 to 5, whereas the Corey exponent to water ‘nw’ decreased with permeability and ranged from 3 to 1.5. The variations in the relative permeability curves are argued to be the result of different rock structures and pore geometries. Variations were also seen in the end-point data and showed consistent behavior with the rock types.\\n The different carbonate rock types were identified based on geological and petrophysical properties. Higher permeability samples were grain-dominated and more heterogeneous in comparison to the lower permeability samples, which were mud-dominated rock types. Imbibition Kr curves showed larger variations than the primary drainage data, which cannot be interpreted based on wettability considerations only. The relative permeability curves have been thoroughly evaluated and QC'd based on raw data of pressure and saturation by use of numerical simulation. Such RRT-based Kr data are not abundant in the literature, and hence should serve as an important piece of information in mixed-wet carbonate reservoirs.\",\"PeriodicalId\":11091,\"journal\":{\"name\":\"Day 3 Wed, November 13, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 13, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197427-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197427-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

碳酸盐岩具有复杂的结构和孔隙几何形状,其分类和性质往往具有挑战性。由于描述不当和缺乏数据质量控制,许多岩石性质仍然无法解释和确定。本文的主要目的是研究复杂碳酸盐岩储层中不同岩石类型相对渗透率的流动特性。从阿布扎比的两个主要油气储层中选取了具有代表性的岩心样品。根据构造相、PoroPerm特征和毛管压力确定了岩石类型。孔隙度从15%到25%不等,渗透率从1 mD到50 mD不等。采用稳态技术,在全储层条件下使用活体流体测量了一次排液和渗吸水-油相对渗透率(Kr)曲线,并进行了原位饱和度监测。在注水循环结束时设计了高速率的凹凸水,以抵消毛细管末端效应。在排水周期结束时加入4周的老化期。对样品进行了稳健的数据QC,并通过对原始数据和实测毛细管压力的数值模拟对相对渗透率进行了最终验证。接下来的QC程序对于消除相对渗透率曲线中的伪影至关重要,以便进行正确的数据评估。不同岩石类型在相对渗透率滞回率和终点上表现出一致的变化。不同岩石类型的渗吸相对渗透率曲线变化较大,Corey / oil ' no '随渗透率从3增加到5,而Corey / water ' nw '随渗透率降低,范围在3 ~ 1.5之间。相对渗透率曲线的变化被认为是不同岩石结构和孔隙几何形状的结果。在终点数据中也可以看到变化,并显示出与岩石类型一致的行为。根据地质和岩石物理性质,确定了不同的碳酸盐岩类型。高渗透率样品以颗粒为主,非均质性较好,而低渗透率样品以泥质为主。渗吸Kr曲线比原始排水数据变化更大,不能仅根据润湿性来解释。基于压力和饱和度的原始数据,采用数值模拟的方法对相对渗透率曲线进行了全面的评价和质量控制。这种基于rrt的Kr数据在文献中并不丰富,因此应该作为混湿碳酸盐岩储层的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Pore Geometry on Relative Permeability in Mixed-Wet Carbonate Reservoirs in Abu Dhabi
Carbonate rocks are complex in their structures and pore geometries and often exhibit a challenge in their classification and behavior. Many rock properties remain unexplained and uncertain because of improper characterization and lack of data QC. The main objective of this paper is to study flow behavior of relative permeability with different rock types in complex carbonate reservoirs. Representative core samples were selected from two major hydrocarbon reservoirs in Abu Dhabi. Rock types were identified based on textural facies, PoroPerm characteristics and capillary pressure. Porosity ranged from 15% to 25%, while permeability varied from 1 mD to 50 mD. Primary drainage and imbibition water-oil relative permeability (Kr) curves were measured by the steady-state technique using live fluids at full reservoir conditions with in-situ saturation monitoring. High-rate bump floods were designed at the end of the flooding cycles to counter capillary end effects. Aging period of 4 weeks was incorporated at the end of the drainage cycle. Robust data QC was performed on the samples, and final validation of the relative permeability was conducted by numerical simulation of the raw data and measured capillary pressure. The followed QC procedure was crucial to eliminate artefact in the relative permeability curves for proper data evaluation. The different rock types showed consistent variations in the relative permeability hysteresis and end points. Imbibition relative permeability curves showed large variations within the different rock types, where Corey exponent to oil ‘no’ increased with permeability from 3 to 5, whereas the Corey exponent to water ‘nw’ decreased with permeability and ranged from 3 to 1.5. The variations in the relative permeability curves are argued to be the result of different rock structures and pore geometries. Variations were also seen in the end-point data and showed consistent behavior with the rock types. The different carbonate rock types were identified based on geological and petrophysical properties. Higher permeability samples were grain-dominated and more heterogeneous in comparison to the lower permeability samples, which were mud-dominated rock types. Imbibition Kr curves showed larger variations than the primary drainage data, which cannot be interpreted based on wettability considerations only. The relative permeability curves have been thoroughly evaluated and QC'd based on raw data of pressure and saturation by use of numerical simulation. Such RRT-based Kr data are not abundant in the literature, and hence should serve as an important piece of information in mixed-wet carbonate reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信