基于特征回归的类生成模型用于目标类别姿态估计

Michele Fenzi, L. Leal-Taixé, B. Rosenhahn, J. Ostermann
{"title":"基于特征回归的类生成模型用于目标类别姿态估计","authors":"Michele Fenzi, L. Leal-Taixé, B. Rosenhahn, J. Ostermann","doi":"10.1109/CVPR.2013.103","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for learning a class representation that can return a continuous value for the pose of an unknown class instance using only 2D data and weak 3D labeling information. Our method is based on generative feature models, i.e., regression functions learned from local descriptors of the same patch collected under different viewpoints. The individual generative models are then clustered in order to create class generative models which form the class representation. At run-time, the pose of the query image is estimated in a maximum a posteriori fashion by combining the regression functions belonging to the matching clusters. We evaluate our approach on the EPFL car dataset and the Pointing'04 face dataset. Experimental results show that our method outperforms by 10% the state-of-the-art in the first dataset and by 9% in the second.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"71 1","pages":"755-762"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Class Generative Models Based on Feature Regression for Pose Estimation of Object Categories\",\"authors\":\"Michele Fenzi, L. Leal-Taixé, B. Rosenhahn, J. Ostermann\",\"doi\":\"10.1109/CVPR.2013.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for learning a class representation that can return a continuous value for the pose of an unknown class instance using only 2D data and weak 3D labeling information. Our method is based on generative feature models, i.e., regression functions learned from local descriptors of the same patch collected under different viewpoints. The individual generative models are then clustered in order to create class generative models which form the class representation. At run-time, the pose of the query image is estimated in a maximum a posteriori fashion by combining the regression functions belonging to the matching clusters. We evaluate our approach on the EPFL car dataset and the Pointing'04 face dataset. Experimental results show that our method outperforms by 10% the state-of-the-art in the first dataset and by 9% in the second.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"71 1\",\"pages\":\"755-762\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

在本文中,我们提出了一种学习类表示的方法,该方法可以仅使用2D数据和弱3D标记信息返回未知类实例姿态的连续值。我们的方法是基于生成特征模型,即从不同视点下收集的同一patch的局部描述符中学习到的回归函数。然后对各个生成模型进行聚类,以创建形成类表示的类生成模型。在运行时,通过组合属于匹配簇的回归函数,以最大后验方式估计查询图像的姿态。我们在EPFL汽车数据集和point04人脸数据集上评估了我们的方法。实验结果表明,我们的方法在第一个数据集中比最先进的数据集高出10%,在第二个数据集中高出9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class Generative Models Based on Feature Regression for Pose Estimation of Object Categories
In this paper, we propose a method for learning a class representation that can return a continuous value for the pose of an unknown class instance using only 2D data and weak 3D labeling information. Our method is based on generative feature models, i.e., regression functions learned from local descriptors of the same patch collected under different viewpoints. The individual generative models are then clustered in order to create class generative models which form the class representation. At run-time, the pose of the query image is estimated in a maximum a posteriori fashion by combining the regression functions belonging to the matching clusters. We evaluate our approach on the EPFL car dataset and the Pointing'04 face dataset. Experimental results show that our method outperforms by 10% the state-of-the-art in the first dataset and by 9% in the second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信