设备上机器学习的调查

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sauptik Dhar, Junyao Guo, Jiayi Liu, S. Tripathi, Unmesh Kurup, Mohak Shah
{"title":"设备上机器学习的调查","authors":"Sauptik Dhar, Junyao Guo, Jiayi Liu, S. Tripathi, Unmesh Kurup, Mohak Shah","doi":"10.1145/3450494","DOIUrl":null,"url":null,"abstract":"The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing numbers of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state of the art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc.). Hence, covering such a large number of topics in a single survey is impractical. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"A Survey of On-Device Machine Learning\",\"authors\":\"Sauptik Dhar, Junyao Guo, Jiayi Liu, S. Tripathi, Unmesh Kurup, Mohak Shah\",\"doi\":\"10.1145/3450494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing numbers of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state of the art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc.). Hence, covering such a large number of topics in a single survey is impractical. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3450494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 30

摘要

在设备上使用机器学习模型的主要范例是在云中训练模型,并使用设备上的训练模型执行推理。然而,随着智能设备数量的增加和硬件的改进,人们对在设备上进行模型训练很感兴趣。鉴于这种兴趣激增,从设备不可知论的角度对该领域进行全面调查,为理解技术现状、确定开放的挑战和未来的研究途径奠定了基础。然而,设备上学习是一个广阔的领域,与人工智能和机器学习中的大量相关主题(包括在线学习、模型自适应、一次/几次学习等)有联系。因此,在一次调查中涵盖如此多的主题是不切实际的。这项调查通过将设备上学习的问题重新表述为资源约束学习,其中资源是计算和内存,从而找到了一个中间立场。这种重新表述允许来自各种研究领域的工具、技术和算法进行公平比较。除了总结目前的现状外,该调查还指出了设备上学习在算法和理论方面面临的一些挑战和下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of On-Device Machine Learning
The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing numbers of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state of the art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc.). Hence, covering such a large number of topics in a single survey is impractical. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信