A. V. Svirid, M. Shapira, Pavel G. Shahoika, Y. Pakhadnia, A. Gilep, S. Usanov
{"title":"重组人血栓素合成酶的配体结合及催化性能","authors":"A. V. Svirid, M. Shapira, Pavel G. Shahoika, Y. Pakhadnia, A. Gilep, S. Usanov","doi":"10.29235/1561-8323-2018-62-1-51-65","DOIUrl":null,"url":null,"abstract":"To study the spectrum of modulators of the human thromboxane synthase activity, the interaction of recombinant protein with various low-molecular weight ligands was analyzed. It was shown that thromboxane synthase interacts with a number of fatty acids and their derivatives (potential substrates or concurrent inhibitors), being a target for nonselective inhibition by imidazole and triazole derivatives used in medical practice and agriculture. Thus, another mechanism of action of endocrine-disrupting chemicals (EDC) was established. For the first time, the reduction of heme iron of thromboxane synthase by cytochrome P450 reductase was shown. This interaction accompanied by a partial inhibitory effect on the enzyme suppresses the formation of reaction by-products 12-hydroxyheptadecatenoic acid (12-HHT) and malonic dialdehyde (MDA). It is likely that this mechanism can participate in the regulation of the enzyme activity in vivo.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"21 1","pages":"51-65"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIGAND-BINDING AND CATALYTIC PROPERTIES OF RECOMBINANT HUMAN THROMBOXANE SYNTHASE\",\"authors\":\"A. V. Svirid, M. Shapira, Pavel G. Shahoika, Y. Pakhadnia, A. Gilep, S. Usanov\",\"doi\":\"10.29235/1561-8323-2018-62-1-51-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the spectrum of modulators of the human thromboxane synthase activity, the interaction of recombinant protein with various low-molecular weight ligands was analyzed. It was shown that thromboxane synthase interacts with a number of fatty acids and their derivatives (potential substrates or concurrent inhibitors), being a target for nonselective inhibition by imidazole and triazole derivatives used in medical practice and agriculture. Thus, another mechanism of action of endocrine-disrupting chemicals (EDC) was established. For the first time, the reduction of heme iron of thromboxane synthase by cytochrome P450 reductase was shown. This interaction accompanied by a partial inhibitory effect on the enzyme suppresses the formation of reaction by-products 12-hydroxyheptadecatenoic acid (12-HHT) and malonic dialdehyde (MDA). It is likely that this mechanism can participate in the regulation of the enzyme activity in vivo.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"21 1\",\"pages\":\"51-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2018-62-1-51-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2018-62-1-51-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LIGAND-BINDING AND CATALYTIC PROPERTIES OF RECOMBINANT HUMAN THROMBOXANE SYNTHASE
To study the spectrum of modulators of the human thromboxane synthase activity, the interaction of recombinant protein with various low-molecular weight ligands was analyzed. It was shown that thromboxane synthase interacts with a number of fatty acids and their derivatives (potential substrates or concurrent inhibitors), being a target for nonselective inhibition by imidazole and triazole derivatives used in medical practice and agriculture. Thus, another mechanism of action of endocrine-disrupting chemicals (EDC) was established. For the first time, the reduction of heme iron of thromboxane synthase by cytochrome P450 reductase was shown. This interaction accompanied by a partial inhibitory effect on the enzyme suppresses the formation of reaction by-products 12-hydroxyheptadecatenoic acid (12-HHT) and malonic dialdehyde (MDA). It is likely that this mechanism can participate in the regulation of the enzyme activity in vivo.