{"title":"一种新的协变量相关和噪声污染的函数线性并发模型估计方法","authors":"Huijuan Ding, Mei Yao, Riquan Zhang","doi":"10.1007/s00184-023-00900-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"26 1","pages":"1-25"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new estimation in functional linear concurrent model with covariate dependent and noise contamination\",\"authors\":\"Huijuan Ding, Mei Yao, Riquan Zhang\",\"doi\":\"10.1007/s00184-023-00900-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"26 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00900-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00900-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.