{"title":"单侧不可积约束系统的动力学","authors":"V. V. Kozlov","doi":"10.2298/TAM190123005K","DOIUrl":null,"url":null,"abstract":"In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the dynamics of systems with one-sided non-integrable constraints\",\"authors\":\"V. V. Kozlov\",\"doi\":\"10.2298/TAM190123005K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM190123005K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM190123005K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
On the dynamics of systems with one-sided non-integrable constraints
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.