一种检测和去除图像随机脉冲噪声的新方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
P. Lyakhov, A. Orazaev
{"title":"一种检测和去除图像随机脉冲噪声的新方法","authors":"P. Lyakhov, A. Orazaev","doi":"10.18287/2412-6179-co-1145","DOIUrl":null,"url":null,"abstract":"The paper proposes a method for detecting and removing impulse noise in images, which determines the similarity between pixels by distance and the difference in brightness values in the local detector window. An impulse noise model is considered, where distorted pixels take random values and also randomly appear in the image. Pixels identified as pulses are recovered with an adaptive median filter. The impulses are determined in the detector window, whose size is calculated in the Euclidean metric and increases with increasing noise intensity in the image. In the experimental part, we discuss visual differences between familiar methods and the one proposed herein on three images for three different impulse noise intensities. In the approximation of image fragments, it is seen that the proposed method copes with the task in the best way, which is also confirmed by numerical estimates of the quality of image reconstruction from impulse noise based on the peak signal-to-noise ratio and the structural similarity index. The proposed method can be used when solving problems of cleaning images under conditions of distorting impulses and for eliminating distortions caused by adverse weather effects, such as raindrops and snow.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method for detecting and removing random-valued impulse noise from images\",\"authors\":\"P. Lyakhov, A. Orazaev\",\"doi\":\"10.18287/2412-6179-co-1145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a method for detecting and removing impulse noise in images, which determines the similarity between pixels by distance and the difference in brightness values in the local detector window. An impulse noise model is considered, where distorted pixels take random values and also randomly appear in the image. Pixels identified as pulses are recovered with an adaptive median filter. The impulses are determined in the detector window, whose size is calculated in the Euclidean metric and increases with increasing noise intensity in the image. In the experimental part, we discuss visual differences between familiar methods and the one proposed herein on three images for three different impulse noise intensities. In the approximation of image fragments, it is seen that the proposed method copes with the task in the best way, which is also confirmed by numerical estimates of the quality of image reconstruction from impulse noise based on the peak signal-to-noise ratio and the structural similarity index. The proposed method can be used when solving problems of cleaning images under conditions of distorting impulses and for eliminating distortions caused by adverse weather effects, such as raindrops and snow.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1145\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种检测和去除图像中脉冲噪声的方法,该方法通过距离确定像素之间的相似性和局部检测器窗口内亮度值的差异。考虑脉冲噪声模型,其中失真像素取随机值,也随机出现在图像中。识别为脉冲的像素用自适应中值滤波器恢复。脉冲在检测器窗口中确定,其大小用欧几里得度量计算,并随着图像中噪声强度的增加而增加。在实验部分,我们讨论了在三种不同的脉冲噪声强度下,熟悉的方法与本文提出的方法在三幅图像上的视觉差异。在图像碎片的逼近中,所提方法能较好地完成任务,基于峰值信噪比和结构相似度指标对脉冲噪声图像重构质量的数值估计也证实了这一点。所提出的方法可用于解决在扭曲脉冲条件下的图像清洗问题以及消除由不利天气影响(如雨滴和雪)引起的畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New method for detecting and removing random-valued impulse noise from images
The paper proposes a method for detecting and removing impulse noise in images, which determines the similarity between pixels by distance and the difference in brightness values in the local detector window. An impulse noise model is considered, where distorted pixels take random values and also randomly appear in the image. Pixels identified as pulses are recovered with an adaptive median filter. The impulses are determined in the detector window, whose size is calculated in the Euclidean metric and increases with increasing noise intensity in the image. In the experimental part, we discuss visual differences between familiar methods and the one proposed herein on three images for three different impulse noise intensities. In the approximation of image fragments, it is seen that the proposed method copes with the task in the best way, which is also confirmed by numerical estimates of the quality of image reconstruction from impulse noise based on the peak signal-to-noise ratio and the structural similarity index. The proposed method can be used when solving problems of cleaning images under conditions of distorting impulses and for eliminating distortions caused by adverse weather effects, such as raindrops and snow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信