A. Carton, C. Jailin, Raoul De Silva, Rubèn Sanchez De la Rosa, S. Muller
{"title":"临床相关微钙化三维模型的建立","authors":"A. Carton, C. Jailin, Raoul De Silva, Rubèn Sanchez De la Rosa, S. Muller","doi":"10.1117/12.2625771","DOIUrl":null,"url":null,"abstract":"A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 μm and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"74 1","pages":"1228602 - 1228602-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a 3D model of clinically relevant microcalcifications\",\"authors\":\"A. Carton, C. Jailin, Raoul De Silva, Rubèn Sanchez De la Rosa, S. Muller\",\"doi\":\"10.1117/12.2625771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 μm and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"74 1\",\"pages\":\"1228602 - 1228602-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a 3D model of clinically relevant microcalcifications
A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 μm and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.