通过智能手机摄像头进行基于光度法的血氧估算

Nam Bui, Anh Nguyen, Phuc Nguyen, Anh-Hoang Truong, A. Ashok, Thang N. Dinh, R. Deterding, Tam N. Vu
{"title":"通过智能手机摄像头进行基于光度法的血氧估算","authors":"Nam Bui, Anh Nguyen, Phuc Nguyen, Anh-Hoang Truong, A. Ashok, Thang N. Dinh, R. Deterding, Tam N. Vu","doi":"10.1145/3131348.3131353","DOIUrl":null,"url":null,"abstract":"We introduce a lightweight, cost-effective, and portable solution for real-time peripheral oxygen saturation SpO2 measurement using photometric sensing through a smartphone's camera. Specifically, we design a hardware plug-in module that snaps onto the smartphone's flashlight and estimates the blood oxygen content from the light intensity reflected off the user's finger and registered on camera images. The oxygen levels are mapped to equivalent photoplethysmography (PPG) signals used for the SpO2 estimation using a machine learning based one-time calibration. With the knowledge that blood oxygen largely responds to Infrared (IR) and Red wavelengths, state-of-the-art pulse oximetry techniques use IR and RED light emitting diodes and photodetectors to sense each channel. We further develop a novel solution that exploits the IR leakage of the LED white light of the smartphone. The system is incorporated with a hardware of IR and RED filters that are spatially separated such that the respective signals are registered on independent areas of the image sensor. We present the preliminary results and analyse possible challenges for further improvement.","PeriodicalId":62224,"journal":{"name":"世界中学生文摘","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Photometry based Blood Oxygen Estimation through Smartphone Cameras\",\"authors\":\"Nam Bui, Anh Nguyen, Phuc Nguyen, Anh-Hoang Truong, A. Ashok, Thang N. Dinh, R. Deterding, Tam N. Vu\",\"doi\":\"10.1145/3131348.3131353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a lightweight, cost-effective, and portable solution for real-time peripheral oxygen saturation SpO2 measurement using photometric sensing through a smartphone's camera. Specifically, we design a hardware plug-in module that snaps onto the smartphone's flashlight and estimates the blood oxygen content from the light intensity reflected off the user's finger and registered on camera images. The oxygen levels are mapped to equivalent photoplethysmography (PPG) signals used for the SpO2 estimation using a machine learning based one-time calibration. With the knowledge that blood oxygen largely responds to Infrared (IR) and Red wavelengths, state-of-the-art pulse oximetry techniques use IR and RED light emitting diodes and photodetectors to sense each channel. We further develop a novel solution that exploits the IR leakage of the LED white light of the smartphone. The system is incorporated with a hardware of IR and RED filters that are spatially separated such that the respective signals are registered on independent areas of the image sensor. We present the preliminary results and analyse possible challenges for further improvement.\",\"PeriodicalId\":62224,\"journal\":{\"name\":\"世界中学生文摘\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"世界中学生文摘\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1145/3131348.3131353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界中学生文摘","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3131348.3131353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了一种轻巧、经济、便携的解决方案,通过智能手机的相机使用光度传感进行实时外围氧饱和度SpO2测量。具体来说,我们设计了一个硬件插件模块,可以连接到智能手机的手电筒上,并根据用户手指反射的光强度和相机图像来估计血氧含量。使用基于机器学习的一次性校准,将氧水平映射到用于SpO2估计的等效光容积脉搏波(PPG)信号。由于知道血氧主要对红外(IR)和红色波长作出反应,最先进的脉搏血氧测量技术使用红外和红色发光二极管和光电探测器来感知每个通道。我们进一步开发了一种新颖的解决方案,利用智能手机LED白光的红外泄漏。该系统结合了空间分离的IR和RED滤波器的硬件,使得各自的信号在图像传感器的独立区域上注册。我们介绍了初步结果,并分析了进一步改进可能面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photometry based Blood Oxygen Estimation through Smartphone Cameras
We introduce a lightweight, cost-effective, and portable solution for real-time peripheral oxygen saturation SpO2 measurement using photometric sensing through a smartphone's camera. Specifically, we design a hardware plug-in module that snaps onto the smartphone's flashlight and estimates the blood oxygen content from the light intensity reflected off the user's finger and registered on camera images. The oxygen levels are mapped to equivalent photoplethysmography (PPG) signals used for the SpO2 estimation using a machine learning based one-time calibration. With the knowledge that blood oxygen largely responds to Infrared (IR) and Red wavelengths, state-of-the-art pulse oximetry techniques use IR and RED light emitting diodes and photodetectors to sense each channel. We further develop a novel solution that exploits the IR leakage of the LED white light of the smartphone. The system is incorporated with a hardware of IR and RED filters that are spatially separated such that the respective signals are registered on independent areas of the image sensor. We present the preliminary results and analyse possible challenges for further improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4051
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信