{"title":"环面上的三阶Benjamin-Ono方程:适定性、行波和稳定性","authors":"Louise Gassot","doi":"10.1016/j.anihpc.2020.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the third order Benjamin-Ono equation on the torus<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>u</mi><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>u</mi><mi>H</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>H</mi><mo>(</mo><mi>u</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>.</mo></math></span></span></span> We prove that for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, the flow map continuously extends to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mi>s</mi><mo>≥</mo><mn>0</mn></math></span>, but does not admit a continuous extension to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Moreover, we show that the extension is weakly sequentially continuous in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span>, but is not weakly sequentially continuous in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span><span>. We then classify the traveling wave solutions for the third order Benjamin-Ono equation in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and study their orbital stability.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 3","pages":"Pages 815-840"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.004","citationCount":"4","resultStr":"{\"title\":\"The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability\",\"authors\":\"Louise Gassot\",\"doi\":\"10.1016/j.anihpc.2020.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the third order Benjamin-Ono equation on the torus<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>u</mi><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>u</mi><mi>H</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>H</mi><mo>(</mo><mi>u</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>.</mo></math></span></span></span> We prove that for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, the flow map continuously extends to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mi>s</mi><mo>≥</mo><mn>0</mn></math></span>, but does not admit a continuous extension to <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Moreover, we show that the extension is weakly sequentially continuous in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> if <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span>, but is not weakly sequentially continuous in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span><span>. We then classify the traveling wave solutions for the third order Benjamin-Ono equation in </span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and study their orbital stability.</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 3\",\"pages\":\"Pages 815-840\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.004\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920300883\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300883","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability
We consider the third order Benjamin-Ono equation on the torus We prove that for any , the flow map continuously extends to if , but does not admit a continuous extension to if . Moreover, we show that the extension is weakly sequentially continuous in if , but is not weakly sequentially continuous in . We then classify the traveling wave solutions for the third order Benjamin-Ono equation in and study their orbital stability.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.