醉酒用户界面:通过日常智能手机任务确定血液酒精水平

A. Mariakakis, Sayna Parsi, Shwetak N. Patel, J. Wobbrock
{"title":"醉酒用户界面:通过日常智能手机任务确定血液酒精水平","authors":"A. Mariakakis, Sayna Parsi, Shwetak N. Patel, J. Wobbrock","doi":"10.1145/3173574.3173808","DOIUrl":null,"url":null,"abstract":"Breathalyzers, the standard quantitative method for assessing inebriation, are primarily owned by law enforcement and used only after a potentially inebriated individual is caught driving. However, not everyone has access to such specialized hardware. We present drunk user interfaces: smartphone user interfaces that measure how alcohol affects a person's motor coordination and cognition using performance metrics and sensor data. We examine five drunk user interfaces and combine them to form the \"DUI app\". DUI uses machine learning models trained on human performance metrics and sensor data to estimate a person's blood alcohol level (BAL). We evaluated DUI on 14 individuals in a week-long longitudinal study wherein each participant used DUI at various BALs. We found that with a global model that accounts for user-specific learning, DUI can estimate a person's BAL with an absolute mean error of 0.005% ± 0.007% and a Pearson's correlation coefficient of 0.96 with breathalyzer measurements.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Drunk User Interfaces: Determining Blood Alcohol Level through Everyday Smartphone Tasks\",\"authors\":\"A. Mariakakis, Sayna Parsi, Shwetak N. Patel, J. Wobbrock\",\"doi\":\"10.1145/3173574.3173808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breathalyzers, the standard quantitative method for assessing inebriation, are primarily owned by law enforcement and used only after a potentially inebriated individual is caught driving. However, not everyone has access to such specialized hardware. We present drunk user interfaces: smartphone user interfaces that measure how alcohol affects a person's motor coordination and cognition using performance metrics and sensor data. We examine five drunk user interfaces and combine them to form the \\\"DUI app\\\". DUI uses machine learning models trained on human performance metrics and sensor data to estimate a person's blood alcohol level (BAL). We evaluated DUI on 14 individuals in a week-long longitudinal study wherein each participant used DUI at various BALs. We found that with a global model that accounts for user-specific learning, DUI can estimate a person's BAL with an absolute mean error of 0.005% ± 0.007% and a Pearson's correlation coefficient of 0.96 with breathalyzer measurements.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3173808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

酒精测试仪是评估醉酒程度的标准定量方法,主要由执法部门拥有,只有在潜在醉酒的人被抓到开车后才会使用。然而,并不是每个人都能使用这种专用硬件。我们提出醉酒用户界面:智能手机用户界面,测量酒精如何影响一个人的运动协调和认知使用性能指标和传感器数据。我们研究了五个醉酒用户界面,并将它们组合成“醉酒app”。酒后驾驶使用经过人类性能指标和传感器数据训练的机器学习模型来估计一个人的血液酒精水平(BAL)。我们在一项为期一周的纵向研究中评估了14个人的DUI,其中每个参与者在不同的bal中使用DUI。我们发现,通过考虑用户特定学习的全局模型,DUI可以估计一个人的BAL,绝对平均误差为0.005%±0.007%,Pearson相关系数为0.96。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drunk User Interfaces: Determining Blood Alcohol Level through Everyday Smartphone Tasks
Breathalyzers, the standard quantitative method for assessing inebriation, are primarily owned by law enforcement and used only after a potentially inebriated individual is caught driving. However, not everyone has access to such specialized hardware. We present drunk user interfaces: smartphone user interfaces that measure how alcohol affects a person's motor coordination and cognition using performance metrics and sensor data. We examine five drunk user interfaces and combine them to form the "DUI app". DUI uses machine learning models trained on human performance metrics and sensor data to estimate a person's blood alcohol level (BAL). We evaluated DUI on 14 individuals in a week-long longitudinal study wherein each participant used DUI at various BALs. We found that with a global model that accounts for user-specific learning, DUI can estimate a person's BAL with an absolute mean error of 0.005% ± 0.007% and a Pearson's correlation coefficient of 0.96 with breathalyzer measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信