挖掘主题一致模式的无监督抽取多文档摘要

Yutong Wu, Yuefeng Li, Yue Xu, Wei Huang
{"title":"挖掘主题一致模式的无监督抽取多文档摘要","authors":"Yutong Wu, Yuefeng Li, Yue Xu, Wei Huang","doi":"10.1109/WI.2016.0028","DOIUrl":null,"url":null,"abstract":"Addressing the problem of information overload, automatic multi-document summarization (MDS) has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of MDS systems. In this paper, we proposed a novel unsupervised pattern-enhanced topic model (PETMSum) for the MDS task. PETMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative, non-redundant, and topically coherent sentences can be selected automatically to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2006 and 2007. The results prove the effectiveness and efficiency of our proposed approach.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"38 1","pages":"129-136"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining Topically Coherent Patterns for Unsupervised Extractive Multi-document Summarization\",\"authors\":\"Yutong Wu, Yuefeng Li, Yue Xu, Wei Huang\",\"doi\":\"10.1109/WI.2016.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the problem of information overload, automatic multi-document summarization (MDS) has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of MDS systems. In this paper, we proposed a novel unsupervised pattern-enhanced topic model (PETMSum) for the MDS task. PETMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative, non-redundant, and topically coherent sentences can be selected automatically to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2006 and 2007. The results prove the effectiveness and efficiency of our proposed approach.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"38 1\",\"pages\":\"129-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了解决信息过载的问题,自动多文档摘要(MDS)已被广泛应用于各种实际应用中。现有的大多数方法对文档采用基于术语的表示,这限制了MDS系统的性能。本文提出了一种新的用于MDS任务的无监督模式增强主题模型(PETMSum)。PETMSum将模式挖掘技术与LDA主题建模相结合,可以为主题和文档生成判别性强、语义丰富的表示,从而自动选择最具代表性、不冗余、主题一致的句子,形成简洁、信息丰富的摘要。在2006年和2007年文献理解会议(DUC)的数据上进行了大量的实验。实验结果证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Topically Coherent Patterns for Unsupervised Extractive Multi-document Summarization
Addressing the problem of information overload, automatic multi-document summarization (MDS) has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of MDS systems. In this paper, we proposed a novel unsupervised pattern-enhanced topic model (PETMSum) for the MDS task. PETMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative, non-redundant, and topically coherent sentences can be selected automatically to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2006 and 2007. The results prove the effectiveness and efficiency of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信