一种优化祖先重组图中重组数的混合方法

N. Thao, L. Vinh
{"title":"一种优化祖先重组图中重组数的混合方法","authors":"N. Thao, L. Vinh","doi":"10.1145/3314367.3314385","DOIUrl":null,"url":null,"abstract":"Building ancestral recombination graphs (ARG) with minimum number of recombination events for large datasets is a challenging problem. We have proposed ARG4WG and REARG heuristic algorithm for constructing ARGs with thousands of whole genome sequences. However, these algorithms do not result in ARGs with minimal number of recombination events. In this work, we propose GAMARG algorithm, an improvement of ARG4WG, to optimize the number of recombination events in ARG building process. Experiment with different datasets showed that GAMARG algorithm outperforms other heuristic algorithms in building ARGs for large datasets. It also is much better than other heuristic algorithms and comparable to exhaustive search methods for small datasets.","PeriodicalId":20485,"journal":{"name":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Approach to Optimize the Number of Recombinations in Ancestral Recombination Graphs\",\"authors\":\"N. Thao, L. Vinh\",\"doi\":\"10.1145/3314367.3314385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building ancestral recombination graphs (ARG) with minimum number of recombination events for large datasets is a challenging problem. We have proposed ARG4WG and REARG heuristic algorithm for constructing ARGs with thousands of whole genome sequences. However, these algorithms do not result in ARGs with minimal number of recombination events. In this work, we propose GAMARG algorithm, an improvement of ARG4WG, to optimize the number of recombination events in ARG building process. Experiment with different datasets showed that GAMARG algorithm outperforms other heuristic algorithms in building ARGs for large datasets. It also is much better than other heuristic algorithms and comparable to exhaustive search methods for small datasets.\",\"PeriodicalId\":20485,\"journal\":{\"name\":\"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314367.3314385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314367.3314385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

构建具有最小重组事件数的大数据集祖先重组图(ARG)是一个具有挑战性的问题。我们提出了ARG4WG和REARG启发式算法,用于构建包含数千个全基因组序列的ARGs。然而,这些算法并不能创造出具有最少重组事件的arg。本文提出了一种基于ARG4WG的改进算法GAMARG,用于优化ARG构建过程中重组事件的数量。不同数据集的实验表明,GAMARG算法在构建大型数据集的arg方面优于其他启发式算法。它也比其他启发式算法好得多,并且可以与小数据集的穷举搜索方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Approach to Optimize the Number of Recombinations in Ancestral Recombination Graphs
Building ancestral recombination graphs (ARG) with minimum number of recombination events for large datasets is a challenging problem. We have proposed ARG4WG and REARG heuristic algorithm for constructing ARGs with thousands of whole genome sequences. However, these algorithms do not result in ARGs with minimal number of recombination events. In this work, we propose GAMARG algorithm, an improvement of ARG4WG, to optimize the number of recombination events in ARG building process. Experiment with different datasets showed that GAMARG algorithm outperforms other heuristic algorithms in building ARGs for large datasets. It also is much better than other heuristic algorithms and comparable to exhaustive search methods for small datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信