紧算子M -理想的球邻近性

C. R. Jayanarayanan, Sreejith Siju
{"title":"紧算子M -理想的球邻近性","authors":"C. R. Jayanarayanan, Sreejith Siju","doi":"10.1090/PROC/15446","DOIUrl":null,"url":null,"abstract":"In this article, we prove the proximinality of closed unit ball of $M$-ideals of compact operators. We also prove the ball proximinality of $M$-embedded spaces in their biduals. Moreover, we show that $\\mathcal{K}(\\ell_1)$, the space of compact operators on $\\ell_1$, is ball proximinal in $\\mathcal{B}(\\ell_1)$, the space of bounded operators on $\\ell_1$, even though $\\mathcal{K}(\\ell_1)$ is not an $M$-ideal in $\\mathcal{B}(\\ell_1)$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ball proximinality of $M$-ideals of compact operators\",\"authors\":\"C. R. Jayanarayanan, Sreejith Siju\",\"doi\":\"10.1090/PROC/15446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove the proximinality of closed unit ball of $M$-ideals of compact operators. We also prove the ball proximinality of $M$-embedded spaces in their biduals. Moreover, we show that $\\\\mathcal{K}(\\\\ell_1)$, the space of compact operators on $\\\\ell_1$, is ball proximinal in $\\\\mathcal{B}(\\\\ell_1)$, the space of bounded operators on $\\\\ell_1$, even though $\\\\mathcal{K}(\\\\ell_1)$ is not an $M$-ideal in $\\\\mathcal{B}(\\\\ell_1)$.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了紧算子$M$-理想的闭单位球的逼近性。我们还证明了$M$嵌入空间在其双元中的球邻近性。此外,我们证明了$\ell_1$上的紧算子空间$\mathcal{K}(\ell_1)$在$\mathcal{B}(\ell_1)$上的有界算子空间$\mathcal{K}(\ell_1)$上是球近端,即使$\mathcal{K}(\ell_1)$不是$\mathcal{B}(\ell_1)$上的$M$-理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ball proximinality of $M$-ideals of compact operators
In this article, we prove the proximinality of closed unit ball of $M$-ideals of compact operators. We also prove the ball proximinality of $M$-embedded spaces in their biduals. Moreover, we show that $\mathcal{K}(\ell_1)$, the space of compact operators on $\ell_1$, is ball proximinal in $\mathcal{B}(\ell_1)$, the space of bounded operators on $\ell_1$, even though $\mathcal{K}(\ell_1)$ is not an $M$-ideal in $\mathcal{B}(\ell_1)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信