Minerva:实现低功耗,高精度深度神经网络加速器

Brandon Reagen, P. Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, D. Brooks
{"title":"Minerva:实现低功耗,高精度深度神经网络加速器","authors":"Brandon Reagen, P. Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, D. Brooks","doi":"10.1145/3007787.3001165","DOIUrl":null,"url":null,"abstract":"The continued success of Deep Neural Networks (DNNs) in classification tasks has sparked a trend of accelerating their execution with specialized hardware. While published designs easily give an order of magnitude improvement over general-purpose hardware, few look beyond an initial implementation. This paper presents Minerva, a highly automated co-design approach across the algorithm, architecture, and circuit levels to optimize DNN hardware accelerators. Compared to an established fixed-point accelerator baseline, we show that fine-grained, heterogeneous datatype optimization reduces power by 1.5×; aggressive, inline predication and pruning of small activity values further reduces power by 2.0×; and active hardware fault detection coupled with domain-aware error mitigation eliminates an additional 2.7× through lowering SRAM voltages. Across five datasets, these optimizations provide a collective average of 8.1× power reduction over an accelerator baseline without compromising DNN model accuracy. Minerva enables highly accurate, ultra-low power DNN accelerators (in the range of tens of milliwatts), making it feasible to deploy DNNs in power-constrained IoT and mobile devices.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"9 1","pages":"267-278"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"537","resultStr":"{\"title\":\"Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators\",\"authors\":\"Brandon Reagen, P. Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, D. Brooks\",\"doi\":\"10.1145/3007787.3001165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continued success of Deep Neural Networks (DNNs) in classification tasks has sparked a trend of accelerating their execution with specialized hardware. While published designs easily give an order of magnitude improvement over general-purpose hardware, few look beyond an initial implementation. This paper presents Minerva, a highly automated co-design approach across the algorithm, architecture, and circuit levels to optimize DNN hardware accelerators. Compared to an established fixed-point accelerator baseline, we show that fine-grained, heterogeneous datatype optimization reduces power by 1.5×; aggressive, inline predication and pruning of small activity values further reduces power by 2.0×; and active hardware fault detection coupled with domain-aware error mitigation eliminates an additional 2.7× through lowering SRAM voltages. Across five datasets, these optimizations provide a collective average of 8.1× power reduction over an accelerator baseline without compromising DNN model accuracy. Minerva enables highly accurate, ultra-low power DNN accelerators (in the range of tens of milliwatts), making it feasible to deploy DNNs in power-constrained IoT and mobile devices.\",\"PeriodicalId\":6634,\"journal\":{\"name\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"9 1\",\"pages\":\"267-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"537\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007787.3001165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 537

摘要

深度神经网络(dnn)在分类任务中的持续成功引发了使用专用硬件加速其执行的趋势。虽然已发布的设计很容易比通用硬件有一个数量级的改进,但很少有人能超越最初的实现。本文介绍了Minerva,一种高度自动化的跨算法、架构和电路级别的协同设计方法,用于优化深度神经网络硬件加速器。与已建立的定点加速器基线相比,我们发现细粒度、异构数据类型优化可将功耗降低1.5倍;积极的、内联的预测和对小活度值的修剪进一步降低了2.0倍的功率;主动硬件故障检测加上域感知错误缓解通过降低SRAM电压消除了额外的2.7倍。在五个数据集上,这些优化在不影响DNN模型精度的情况下,在加速器基线上平均减少了8.1倍的功率。Minerva实现了高精度、超低功耗的DNN加速器(在几十毫瓦的范围内),使得在功率受限的物联网和移动设备中部署DNN成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators
The continued success of Deep Neural Networks (DNNs) in classification tasks has sparked a trend of accelerating their execution with specialized hardware. While published designs easily give an order of magnitude improvement over general-purpose hardware, few look beyond an initial implementation. This paper presents Minerva, a highly automated co-design approach across the algorithm, architecture, and circuit levels to optimize DNN hardware accelerators. Compared to an established fixed-point accelerator baseline, we show that fine-grained, heterogeneous datatype optimization reduces power by 1.5×; aggressive, inline predication and pruning of small activity values further reduces power by 2.0×; and active hardware fault detection coupled with domain-aware error mitigation eliminates an additional 2.7× through lowering SRAM voltages. Across five datasets, these optimizations provide a collective average of 8.1× power reduction over an accelerator baseline without compromising DNN model accuracy. Minerva enables highly accurate, ultra-low power DNN accelerators (in the range of tens of milliwatts), making it feasible to deploy DNNs in power-constrained IoT and mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信