聚合图神经网络

Fernando Gama, A. Marques, Alejandro Ribeiro, G. Leus
{"title":"聚合图神经网络","authors":"Fernando Gama, A. Marques, Alejandro Ribeiro, G. Leus","doi":"10.1109/ICASSP.2019.8682975","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) regularize classical neural networks by exploiting the underlying irregular structure supporting graph data, extending its application to broader data domains. The aggregation GNN presented here is a novel GNN that exploits the fact that the data collected at a single node by means of successive local exchanges with neighbors exhibits a regular structure. Thus, regular convolution and regular pooling yield an appropriately regularized GNN. To address some scalability issues that arise when collecting all the information at a single node, we propose a multi-node aggregation GNN that constructs regional features that are later aggregated into more global features and so on. We show superior performance in a source localization problem on synthetic graphs and on the authorship attribution problem.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"150 1","pages":"4943-4947"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Aggregation Graph Neural Networks\",\"authors\":\"Fernando Gama, A. Marques, Alejandro Ribeiro, G. Leus\",\"doi\":\"10.1109/ICASSP.2019.8682975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) regularize classical neural networks by exploiting the underlying irregular structure supporting graph data, extending its application to broader data domains. The aggregation GNN presented here is a novel GNN that exploits the fact that the data collected at a single node by means of successive local exchanges with neighbors exhibits a regular structure. Thus, regular convolution and regular pooling yield an appropriately regularized GNN. To address some scalability issues that arise when collecting all the information at a single node, we propose a multi-node aggregation GNN that constructs regional features that are later aggregated into more global features and so on. We show superior performance in a source localization problem on synthetic graphs and on the authorship attribution problem.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"150 1\",\"pages\":\"4943-4947\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

图神经网络(gnn)通过利用支持图数据的底层不规则结构对经典神经网络进行正则化,将其应用扩展到更广泛的数据领域。本文提出的聚合GNN是一种新颖的GNN,它利用了在单个节点上通过与相邻节点的连续本地交换收集的数据呈现规则结构的事实。因此,规则卷积和规则池化产生一个适当正则化的GNN。为了解决在单个节点上收集所有信息时出现的一些可扩展性问题,我们提出了一个多节点聚合GNN,该GNN构建区域特征,然后聚合成更多的全局特征,等等。我们在合成图的源定位问题和作者归属问题上表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregation Graph Neural Networks
Graph neural networks (GNNs) regularize classical neural networks by exploiting the underlying irregular structure supporting graph data, extending its application to broader data domains. The aggregation GNN presented here is a novel GNN that exploits the fact that the data collected at a single node by means of successive local exchanges with neighbors exhibits a regular structure. Thus, regular convolution and regular pooling yield an appropriately regularized GNN. To address some scalability issues that arise when collecting all the information at a single node, we propose a multi-node aggregation GNN that constructs regional features that are later aggregated into more global features and so on. We show superior performance in a source localization problem on synthetic graphs and on the authorship attribution problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信