在大事件序列中挖掘事件相关性和时间滞后的框架

M. Zoller, M. Baum, Marco F. Huber
{"title":"在大事件序列中挖掘事件相关性和时间滞后的框架","authors":"M. Zoller, M. Baum, Marco F. Huber","doi":"10.1109/INDIN.2017.8104876","DOIUrl":null,"url":null,"abstract":"Event correlation is the task of detecting dependencies between events in event sequences, e.g., for predictive maintenance based on log-files. In this work, a new data-driven, generic framework for event correlation is presented. First, we use a fast preliminary test statistic to determine candidate event type pairs. Next, the precise distribution of the time lag between those pairs is calculated. For this purpose, a new efficient iterative method is developed that aligns two event sequences and finds the optimal event assignments. In our experiments, the proposed method is orders of magnitude faster than state-of-the-art methods but always yields similar (or even better) results.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"53 1","pages":"805-810"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Framework for mining event correlations and time lags in large event sequences\",\"authors\":\"M. Zoller, M. Baum, Marco F. Huber\",\"doi\":\"10.1109/INDIN.2017.8104876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event correlation is the task of detecting dependencies between events in event sequences, e.g., for predictive maintenance based on log-files. In this work, a new data-driven, generic framework for event correlation is presented. First, we use a fast preliminary test statistic to determine candidate event type pairs. Next, the precise distribution of the time lag between those pairs is calculated. For this purpose, a new efficient iterative method is developed that aligns two event sequences and finds the optimal event assignments. In our experiments, the proposed method is orders of magnitude faster than state-of-the-art methods but always yields similar (or even better) results.\",\"PeriodicalId\":6595,\"journal\":{\"name\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"53 1\",\"pages\":\"805-810\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2017.8104876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

事件关联是检测事件序列中事件之间的依赖关系的任务,例如,用于基于日志文件的预测性维护。在这项工作中,提出了一个新的数据驱动的通用事件关联框架。首先,我们使用快速初步测试统计来确定候选事件类型对。接下来,计算这些对之间的时间滞后的精确分布。为此,提出了一种新的高效迭代方法,对两个事件序列进行对齐,并找到最优的事件分配。在我们的实验中,提出的方法比最先进的方法快几个数量级,但总是产生相似(甚至更好)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework for mining event correlations and time lags in large event sequences
Event correlation is the task of detecting dependencies between events in event sequences, e.g., for predictive maintenance based on log-files. In this work, a new data-driven, generic framework for event correlation is presented. First, we use a fast preliminary test statistic to determine candidate event type pairs. Next, the precise distribution of the time lag between those pairs is calculated. For this purpose, a new efficient iterative method is developed that aligns two event sequences and finds the optimal event assignments. In our experiments, the proposed method is orders of magnitude faster than state-of-the-art methods but always yields similar (or even better) results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信