{"title":"不同地下情况下层状介质中的表面波色散","authors":"N. Roy, Aniket Desai, R. Jakka","doi":"10.4018/ijgee.2020070102","DOIUrl":null,"url":null,"abstract":"Surface wave techniques are widely used to characterize a site based on shear wave velocity (Vs) or stiffness variation with depth. It utilizes the dispersion property of Rayleigh wave in a heterogeneous media. Dispersion curve is obtained from analyzing collected field test data and the final Vs profile is extracted from the inversion of the generated dispersion curve. The varying subsoil structures influence whether one or more Rayleigh modes will participate in the resulting wave propagation phenomenon. So, neglecting the higher mode participation may sometimes results in a completely different velocity profile than the actual existing one. In this paper, a detailed and comprehensive numerical study has been performed using finite element method for different types of soil profiles with different half-space impedances to assess how it affects the surface wave dispersion phenomenon. In addition to that, the effect of different data acquisition parameters on surface wave dispersion has also been studied.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"9 1","pages":"26-49"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Wave Dispersion in a Layered Medium for Varying Subsurface Scenarios\",\"authors\":\"N. Roy, Aniket Desai, R. Jakka\",\"doi\":\"10.4018/ijgee.2020070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface wave techniques are widely used to characterize a site based on shear wave velocity (Vs) or stiffness variation with depth. It utilizes the dispersion property of Rayleigh wave in a heterogeneous media. Dispersion curve is obtained from analyzing collected field test data and the final Vs profile is extracted from the inversion of the generated dispersion curve. The varying subsoil structures influence whether one or more Rayleigh modes will participate in the resulting wave propagation phenomenon. So, neglecting the higher mode participation may sometimes results in a completely different velocity profile than the actual existing one. In this paper, a detailed and comprehensive numerical study has been performed using finite element method for different types of soil profiles with different half-space impedances to assess how it affects the surface wave dispersion phenomenon. In addition to that, the effect of different data acquisition parameters on surface wave dispersion has also been studied.\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":\"9 1\",\"pages\":\"26-49\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijgee.2020070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijgee.2020070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Surface Wave Dispersion in a Layered Medium for Varying Subsurface Scenarios
Surface wave techniques are widely used to characterize a site based on shear wave velocity (Vs) or stiffness variation with depth. It utilizes the dispersion property of Rayleigh wave in a heterogeneous media. Dispersion curve is obtained from analyzing collected field test data and the final Vs profile is extracted from the inversion of the generated dispersion curve. The varying subsoil structures influence whether one or more Rayleigh modes will participate in the resulting wave propagation phenomenon. So, neglecting the higher mode participation may sometimes results in a completely different velocity profile than the actual existing one. In this paper, a detailed and comprehensive numerical study has been performed using finite element method for different types of soil profiles with different half-space impedances to assess how it affects the surface wave dispersion phenomenon. In addition to that, the effect of different data acquisition parameters on surface wave dispersion has also been studied.