新一代气体(液体)传感装置

Gole Jl, W. Laminack
{"title":"新一代气体(液体)传感装置","authors":"Gole Jl, W. Laminack","doi":"10.4172/2161-0398.1000217","DOIUrl":null,"url":null,"abstract":"We present a short review and novel approach for the construction of conductometric sensors demonstrating considerably higher sensitivities than traditional metal oxide sensors. Sensor platforms do not require film-based technology, operate at room temperature, and can be obtained without the use of time consuming self-assembly processes. A combined nanopore coated micro-porous array, is deposited with nanostructure directing acidic metal oxide island sites which vary in their Lewis acidity, decorate the micropores, and control an electron transduction process. The interaction of analytes with these island sites varies in a predictable manner and can be modified through in-situ functionalization of their Lewis acidity through formation of the oxynittrides or oxysulfides. Microporesallow rapid Fickian diffusion of the analytes to the active nanostructured island sites whose reversible interaction with the analyte dominates the sensor response. We require only that the island sites be deposited at sufficiently low concentration so as not to interact electronically with each other. Highly accurate repeat placement of the nanostructured island depositions is not required. The nanoporous walls of the microarray act as a phase match for the deposition of a diversity of nanostructures that are selected for deposition from a variety of solution-based sources and the forgiving deposition process requires a minimum of energy consumption and time. Comparisons to a variety of metal oxide systems are considered. Observed sensitivities and the sensor system reversibility can be predicted from the recently developing IHSAB model.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Generation Devices for Gas (Liquid) Sensing\",\"authors\":\"Gole Jl, W. Laminack\",\"doi\":\"10.4172/2161-0398.1000217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a short review and novel approach for the construction of conductometric sensors demonstrating considerably higher sensitivities than traditional metal oxide sensors. Sensor platforms do not require film-based technology, operate at room temperature, and can be obtained without the use of time consuming self-assembly processes. A combined nanopore coated micro-porous array, is deposited with nanostructure directing acidic metal oxide island sites which vary in their Lewis acidity, decorate the micropores, and control an electron transduction process. The interaction of analytes with these island sites varies in a predictable manner and can be modified through in-situ functionalization of their Lewis acidity through formation of the oxynittrides or oxysulfides. Microporesallow rapid Fickian diffusion of the analytes to the active nanostructured island sites whose reversible interaction with the analyte dominates the sensor response. We require only that the island sites be deposited at sufficiently low concentration so as not to interact electronically with each other. Highly accurate repeat placement of the nanostructured island depositions is not required. The nanoporous walls of the microarray act as a phase match for the deposition of a diversity of nanostructures that are selected for deposition from a variety of solution-based sources and the forgiving deposition process requires a minimum of energy consumption and time. Comparisons to a variety of metal oxide systems are considered. Observed sensitivities and the sensor system reversibility can be predicted from the recently developing IHSAB model.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个简短的回顾和新方法的建设电导传感器显示相当高的灵敏度比传统的金属氧化物传感器。传感器平台不需要基于薄膜的技术,在室温下操作,并且可以在不使用耗时的自组装过程的情况下获得。复合纳米孔包覆微孔阵列,沉积了纳米结构,可指导路易斯酸度变化的酸性金属氧化物岛位,装饰微孔,并控制电子转导过程。分析物与这些岛位的相互作用以一种可预测的方式变化,并且可以通过形成氧化氮或氧化硫化物来原位官能化它们的刘易斯酸度来修饰。微孔允许分析物快速的菲克扩散到活性的纳米结构岛位,其与分析物的可逆相互作用主导了传感器的响应。我们只要求岛址以足够低的浓度沉积,以免彼此发生电子相互作用。不需要高度精确的纳米结构岛沉积重复放置。微阵列的纳米孔壁充当了沉积多种纳米结构的相匹配,这些纳米结构是从各种溶液源中选择沉积的,并且宽容的沉积过程需要最小的能量消耗和时间。考虑了与各种金属氧化物体系的比较。观测到的灵敏度和传感器系统的可逆性可以用最近开发的IHSAB模型来预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Generation Devices for Gas (Liquid) Sensing
We present a short review and novel approach for the construction of conductometric sensors demonstrating considerably higher sensitivities than traditional metal oxide sensors. Sensor platforms do not require film-based technology, operate at room temperature, and can be obtained without the use of time consuming self-assembly processes. A combined nanopore coated micro-porous array, is deposited with nanostructure directing acidic metal oxide island sites which vary in their Lewis acidity, decorate the micropores, and control an electron transduction process. The interaction of analytes with these island sites varies in a predictable manner and can be modified through in-situ functionalization of their Lewis acidity through formation of the oxynittrides or oxysulfides. Microporesallow rapid Fickian diffusion of the analytes to the active nanostructured island sites whose reversible interaction with the analyte dominates the sensor response. We require only that the island sites be deposited at sufficiently low concentration so as not to interact electronically with each other. Highly accurate repeat placement of the nanostructured island depositions is not required. The nanoporous walls of the microarray act as a phase match for the deposition of a diversity of nanostructures that are selected for deposition from a variety of solution-based sources and the forgiving deposition process requires a minimum of energy consumption and time. Comparisons to a variety of metal oxide systems are considered. Observed sensitivities and the sensor system reversibility can be predicted from the recently developing IHSAB model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信