SANet:用于摄像机定位的场景不可知网络

Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasutaka Furukawa, P. Tan
{"title":"SANet:用于摄像机定位的场景不可知网络","authors":"Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasutaka Furukawa, P. Tan","doi":"10.1109/ICCV.2019.00013","DOIUrl":null,"url":null,"abstract":"This paper presents a scene agnostic neural architecture for camera localization, where model parameters and scenes are independent from each other.Despite recent advancement in learning based methods, most approaches require training for each scene one by one, not applicable for online applications such as SLAM and robotic navigation, where a model must be built on-the-fly.Our approach learns to build a hierarchical scene representation and predicts a dense scene coordinate map of a query RGB image on-the-fly given an arbitrary scene. The 6D camera pose of the query image can be estimated with the predicted scene coordinate map. Additionally, the dense prediction can be used for other online robotic and AR applications such as obstacle avoidance. We demonstrate the effectiveness and efficiency of our method on both indoor and outdoor benchmarks, achieving state-of-the-art performance.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"21 1","pages":"42-51"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"SANet: Scene Agnostic Network for Camera Localization\",\"authors\":\"Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasutaka Furukawa, P. Tan\",\"doi\":\"10.1109/ICCV.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scene agnostic neural architecture for camera localization, where model parameters and scenes are independent from each other.Despite recent advancement in learning based methods, most approaches require training for each scene one by one, not applicable for online applications such as SLAM and robotic navigation, where a model must be built on-the-fly.Our approach learns to build a hierarchical scene representation and predicts a dense scene coordinate map of a query RGB image on-the-fly given an arbitrary scene. The 6D camera pose of the query image can be estimated with the predicted scene coordinate map. Additionally, the dense prediction can be used for other online robotic and AR applications such as obstacle avoidance. We demonstrate the effectiveness and efficiency of our method on both indoor and outdoor benchmarks, achieving state-of-the-art performance.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"21 1\",\"pages\":\"42-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文提出了一种场景不可知的摄像机定位神经网络体系结构,其中模型参数和场景是相互独立的。尽管基于学习的方法最近取得了进展,但大多数方法都需要对每个场景逐一进行训练,这不适用于在线应用,如SLAM和机器人导航,因为这些应用必须实时构建模型。我们的方法学习构建分层场景表示,并在给定任意场景的情况下实时预测查询RGB图像的密集场景坐标图。通过预测的场景坐标图,可以估计查询图像的6D相机姿态。此外,密集预测可用于其他在线机器人和AR应用,如避障。我们在室内和室外基准上展示了我们方法的有效性和效率,实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SANet: Scene Agnostic Network for Camera Localization
This paper presents a scene agnostic neural architecture for camera localization, where model parameters and scenes are independent from each other.Despite recent advancement in learning based methods, most approaches require training for each scene one by one, not applicable for online applications such as SLAM and robotic navigation, where a model must be built on-the-fly.Our approach learns to build a hierarchical scene representation and predicts a dense scene coordinate map of a query RGB image on-the-fly given an arbitrary scene. The 6D camera pose of the query image can be estimated with the predicted scene coordinate map. Additionally, the dense prediction can be used for other online robotic and AR applications such as obstacle avoidance. We demonstrate the effectiveness and efficiency of our method on both indoor and outdoor benchmarks, achieving state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信