典型复合地质条件下TBM刀盘动力掘进性能预测方法

Jingxiu Ling, Xiaojing Yang, Zhihong Wu
{"title":"典型复合地质条件下TBM刀盘动力掘进性能预测方法","authors":"Jingxiu Ling, Xiaojing Yang, Zhihong Wu","doi":"10.33142/ME.V1I1.659","DOIUrl":null,"url":null,"abstract":"The cutterhead system is a core component of TBM equipment, which works in the extremely severe environment, and the strong impact loads result in severe vibration, crack, damage failure and other engineering failures. Accordingly, the key for cutterhead system structure design and parameter matching is to evaluate and predict cutterhead tunneling performance reasonably. In this paper, a prediction method for TBM cutterhead dynamic tunneling performance is proposed under the typical composite geological conditions, based on the CSM model of multi-cutters and cutter loads field test data. Then an actual TBM cutterhead of a water conservancy project is taken as an example, a spatial three-dimensional separation zone model for cutterhead tunneling is established under the typical geological condition, and the parameters influence rules of cutterhead tunneling performance are analyzed. The results show that, the cutterhead loads and specific energy change rules with different parameters are basically similar. Moreover, under the condition of penetration p=10mm, the cutterhead bending moment coefficient of variation magnitude exceeds 20%, which is the maximum, and the normal cutter spacing optimal value is 95mm. Also, when the normal cutter spacing is kept constant in 85mm, the penetration has a greater influence on the torque and specific energy coefficient of variations, which is increased from 2mm to 10mm, and the two indexes decrease by about 73%. It is indicated that proper increase of penetration is beneficial to reduce the vibration fluctuation degree of torque and specific energy. The proposed method of TBM cutterhead dynamic tunneling performance and the analysis results can provide theoretical basis and design reference for TBM cutterhead layout and tunneling parameters matching.","PeriodicalId":16315,"journal":{"name":"Journal of Mechanical Engineering Science and Technology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prediction Method for TBM Cutterhead Dynamic Tunneling Performance under Typical Composite Geological Conditions\",\"authors\":\"Jingxiu Ling, Xiaojing Yang, Zhihong Wu\",\"doi\":\"10.33142/ME.V1I1.659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cutterhead system is a core component of TBM equipment, which works in the extremely severe environment, and the strong impact loads result in severe vibration, crack, damage failure and other engineering failures. Accordingly, the key for cutterhead system structure design and parameter matching is to evaluate and predict cutterhead tunneling performance reasonably. In this paper, a prediction method for TBM cutterhead dynamic tunneling performance is proposed under the typical composite geological conditions, based on the CSM model of multi-cutters and cutter loads field test data. Then an actual TBM cutterhead of a water conservancy project is taken as an example, a spatial three-dimensional separation zone model for cutterhead tunneling is established under the typical geological condition, and the parameters influence rules of cutterhead tunneling performance are analyzed. The results show that, the cutterhead loads and specific energy change rules with different parameters are basically similar. Moreover, under the condition of penetration p=10mm, the cutterhead bending moment coefficient of variation magnitude exceeds 20%, which is the maximum, and the normal cutter spacing optimal value is 95mm. Also, when the normal cutter spacing is kept constant in 85mm, the penetration has a greater influence on the torque and specific energy coefficient of variations, which is increased from 2mm to 10mm, and the two indexes decrease by about 73%. It is indicated that proper increase of penetration is beneficial to reduce the vibration fluctuation degree of torque and specific energy. The proposed method of TBM cutterhead dynamic tunneling performance and the analysis results can provide theoretical basis and design reference for TBM cutterhead layout and tunneling parameters matching.\",\"PeriodicalId\":16315,\"journal\":{\"name\":\"Journal of Mechanical Engineering Science and Technology\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33142/ME.V1I1.659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33142/ME.V1I1.659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刀盘系统是TBM设备的核心部件,其工作环境极其恶劣,强烈的冲击载荷会导致严重的振动、裂纹、损伤失效等工程故障。因此,合理评价和预测刀盘掘进性能是刀盘系统结构设计和参数匹配的关键。本文基于多刀体CSM模型和刀体载荷现场试验数据,提出了典型复合地质条件下TBM刀盘动态掘进性能的预测方法。然后以某水利工程实际掘进机刀盘为例,建立了典型地质条件下刀盘掘进的空间三维分离带模型,分析了参数对刀盘掘进性能的影响规律。结果表明,不同参数下刀盘载荷和比能的变化规律基本相似。在侵彻p=10mm的情况下,刀盘弯矩系数变化幅度超过20%,达到最大值,法向刀距最优值为95mm。当法向刀距保持在85mm不变时,侵彻对扭矩和比能变化系数的影响更大,从2mm增加到10mm,两项指标下降约73%。结果表明,适当增加侵彻量有利于减小扭矩和比能的振动波动程度。提出的TBM刀盘动态掘进性能分析方法及分析结果可为TBM刀盘布置及掘进参数匹配提供理论依据和设计参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prediction Method for TBM Cutterhead Dynamic Tunneling Performance under Typical Composite Geological Conditions
The cutterhead system is a core component of TBM equipment, which works in the extremely severe environment, and the strong impact loads result in severe vibration, crack, damage failure and other engineering failures. Accordingly, the key for cutterhead system structure design and parameter matching is to evaluate and predict cutterhead tunneling performance reasonably. In this paper, a prediction method for TBM cutterhead dynamic tunneling performance is proposed under the typical composite geological conditions, based on the CSM model of multi-cutters and cutter loads field test data. Then an actual TBM cutterhead of a water conservancy project is taken as an example, a spatial three-dimensional separation zone model for cutterhead tunneling is established under the typical geological condition, and the parameters influence rules of cutterhead tunneling performance are analyzed. The results show that, the cutterhead loads and specific energy change rules with different parameters are basically similar. Moreover, under the condition of penetration p=10mm, the cutterhead bending moment coefficient of variation magnitude exceeds 20%, which is the maximum, and the normal cutter spacing optimal value is 95mm. Also, when the normal cutter spacing is kept constant in 85mm, the penetration has a greater influence on the torque and specific energy coefficient of variations, which is increased from 2mm to 10mm, and the two indexes decrease by about 73%. It is indicated that proper increase of penetration is beneficial to reduce the vibration fluctuation degree of torque and specific energy. The proposed method of TBM cutterhead dynamic tunneling performance and the analysis results can provide theoretical basis and design reference for TBM cutterhead layout and tunneling parameters matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信