{"title":"改进的噪声种群恢复和稀疏函数的逆Bonami-Beckner不等式","authors":"Shachar Lovett, Jiapeng Zhang","doi":"10.1145/2746539.2746540","DOIUrl":null,"url":null,"abstract":"The noisy population recovery problem is a basic statistical inference problem. Given an unknown distribution in {0,1}n with support of size k, and given access only to noisy samples from it, where each bit is flipped independently with probability (1-μ)/2, estimate the original probability up to an additive error of ε. We give an algorithm which solves this problem in time polynomial in (klog log k, n, 1/ε). This improves on the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the problem in time polynomial in (klog k, n, 1/ε). Our main technical contribution, which facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L1 norm of sparse functions.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Improved Noisy Population Recovery, and Reverse Bonami-Beckner Inequality for Sparse Functions\",\"authors\":\"Shachar Lovett, Jiapeng Zhang\",\"doi\":\"10.1145/2746539.2746540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The noisy population recovery problem is a basic statistical inference problem. Given an unknown distribution in {0,1}n with support of size k, and given access only to noisy samples from it, where each bit is flipped independently with probability (1-μ)/2, estimate the original probability up to an additive error of ε. We give an algorithm which solves this problem in time polynomial in (klog log k, n, 1/ε). This improves on the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the problem in time polynomial in (klog k, n, 1/ε). Our main technical contribution, which facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L1 norm of sparse functions.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
摘要
噪声种群恢复问题是一个基本的统计推理问题。给定支持大小为k的{0,1}n中的未知分布,并且只能访问其中的噪声样本,其中每个比特以(1-μ)/2的概率独立翻转,估计原始概率直至加性误差ε。给出了一种求解该问题的时间多项式算法(klog log k, n, 1/ε)。这是对Wigderson和Yehudayoff [FOCS 2012]之前的算法的改进,该算法在(klog k, n, 1/ε)的时间多项式中解决问题。我们的主要技术贡献是简化了算法,为稀疏函数的L1范数提供了一个新的反向Bonami-Beckner不等式。
Improved Noisy Population Recovery, and Reverse Bonami-Beckner Inequality for Sparse Functions
The noisy population recovery problem is a basic statistical inference problem. Given an unknown distribution in {0,1}n with support of size k, and given access only to noisy samples from it, where each bit is flipped independently with probability (1-μ)/2, estimate the original probability up to an additive error of ε. We give an algorithm which solves this problem in time polynomial in (klog log k, n, 1/ε). This improves on the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the problem in time polynomial in (klog k, n, 1/ε). Our main technical contribution, which facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L1 norm of sparse functions.